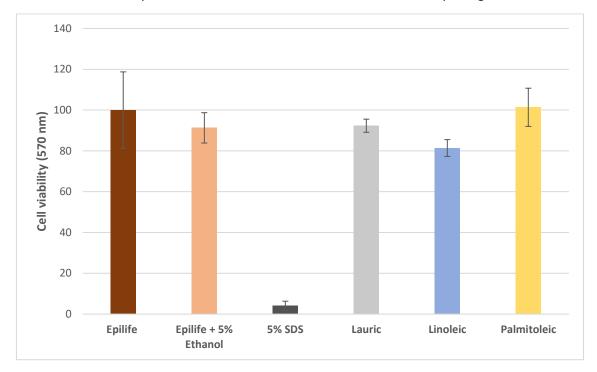

PRELIMINARY RESULTS

AFA MIC assays

A/C cluster representative strain (ICE25) is more susceptible to lauric (C12:0), linoleic (C18:2 Δ 9,12) and palmitoleic (C16: Δ 9) acids than the B cluster representative strain (19N), as shown in Figure 1 and Table 1.

Figure 1 – *S. epidermidis* growth in the presence of lauric acid (concentrations in μ g/mL). After 20 h of growth with different lauric acid concentrations, a culture aliquot was plated in TSA and was incubated at 37°C for 24 hours. At 7.81 μ g/mL, bacterial growth was only observed for the strain belonging to the B lineage (surrounded by the red circle).


Table 1 - Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) in μ g/mL of lauric, linoleic and palmitoleic acids for *S. epidermidis* representative strains of B and A/C lineages.

Fatty acid	MIC		MBC	
	19N	ICE25	19N	ICE25
Lauric acid (C12:0)	15.6	7.8	15.6	7.8
Linoleic acid (C18:2∆9,12)	>4000	250*	>4000	>4000
Palmitoleic acid (C16:Δ9)	>500	31.2	-	-

*Values for 60% growth inhibition

3D-reconstructed skin cytotoxicity assays

Lauric, linoleic and palmitoleic acids (AFA) do not show cytotoxicity on the 3D reconstructed skin model at the respective MIC concentrations determined for the SE pathogenic strain.

Figure 2 - Cell viability on the 3D RHE model considering Epilife medium as 100% cell viability. Epilife+5% ethanol and 5% SDS were used as negative and positive controls, respectively.

Table 2. S. epidermidis ICE25 and 19N strains genome comparison. Comparison of *S. epidermidis* ICE25 (A/C cluster) against 19N (B cluster) genome using *S. epidermidis* RP62a as the reference genome. Highlighted in grey are the parameters for the individual comparison of 19N and ICE25 genomes against *S. epidermidis* RP62A reference genome. Percentages between brackets are relative to the reference.

Number of genes	S. epiderm	S. epidermidis RP62A		
In reference	24	2494		
	ICE25	19N		
In strain	2258	2508		
Strain-specific	73	55		
Matching genes	2156 (86%)	2172 (87%)		
Equal to reference	913	69		
New in strain*	102	336		

*New in strain = In strain - Matching genes

Table 3 S. epidermidis ICE25 and 19N strains proteome comparison. Number of proteins differentially abundant between both strains per metabolic/biological process.

Metabolic/Cellular Process	Number of proteins	Number of proteins more abundant in		
	ICE25	19N		
Central Metabolism	22	14		
Cell wall composition	3	4		
Stress response and regulation	0	20		
Virulence	3	0		
pH homeostasis	2	5		
Proteolytic activity	10	5		
Recombination and replication	0	3		
Aminoacyl-tRNA biosynthesis	1	5		
Glycine, THF & IMP biosynthesis	0	9		
Translation	4	4		