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patients, CSF samples were collected during the course 
of intrathecal chemotherapy, making it possible to assess 
the patient´s response to treatment. 1H-NMR spectra were 
acquired and statistical multivariate and univariate analysis 
were performed to identify significant alterations.
Results  Significant metabolite differences were found 
between LI and control groups in CSF, but not in serum. A 
predictive PLS-DA cross-validated model identified signifi-
cant pool changes in glycine, alanine, pyruvate, acetylcarni-
tine, carnitine, and phenylalanine. Additionally, increments 
in protein signals were detected in the LI group. Signifi-
cantly, the PLS-DA model predicted correctly all samples 
obtained from the group of patients in remission during LI 
treatment.
Conclusions  The results show that the CSF NMR-metab-
olomics approach is a promising complementary method in 
clinical diagnosis and treatment follow-up of LI in B-NHL 
patients.

Keywords  NMR metabolomics · B cell non-Hodgkin 
lymphoma · Leptomeningeal infiltration · Cerebrospinal 
fluid · Serum

1  Introduction

B-cell non-Hodgkin lymphoma (B-NHL) arises from aber-
rant DNA mutations taking place during the development 
of B-lymphocytes in the lymphoid system (Nogai et al. 
2011). Systemic chemotherapeutic treatment enables sur-
vival of more than half of the patients within this hetero-
geneous entity, with about 40% aggressive cases showing 
relapse and refractory disease (Stenson et al. 2016). Since 
the current standard chemotherapy agents fail to penetrate 
the blood–brain barrier, some patients affected by the 
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malignancy ultimately develop parenchymal and leptome-
ningeal infiltration (LI), both associated with poor progno-
sis. Central Nervous System (CNS) relapse may result from 
either occult disease present at time of initial diagnosis or it 
may develop due to a later acquisition of CNS-penetrating 
subtypes of malignant clones and occurs in 5–15% of all 
aggressive, non Burkitt B-NHL cases (Chamberlain 2008; 
Demopoulos 2004). Several risk factors for the development 
of LI in B-NHL patients have been identified, such as high 
International Prognostic Index (IPI) (lymphoma subtype and 
stage), extent and type of extranodal disease, site-specific 
disease, such as testes, breast, paranasal or parameningeal, 
age, performance status and elevated serum lactate dehy-
drogenase (LDH) levels (Nolan and Abrey 2003; Schmitz 
et al. 2016).

The final diagnosis of LI usually involves the cytological 
evaluation of cerebrospinal fluid (CSF) and flow-cytometry 
to detect the presence of lymphoma cells, in parallel with 
gadolinium-enhanced MRI scans, and the search for CSF 
biochemical markers (lactate and glucose), and tumor-
associated protein markers (Cavaliere et al. 2012; Nolan 
and Abrey 2003). Although essential to the establishment 
of a definitive diagnosis, all these procedures have draw-
backs. For instance, the rate of positive results in the first 
CSF cytology can be as low as 71%, thus requiring a series 
of invasive collections of CSF until a conclusive diagnosis 
is attained (Lee 2015). MRI can also lead to 30–70% false 
negative results (Cavaliere et al. 2012). Therefore, more sen-
sitive and less-invasive diagnostic procedures are necessary 
so that more informed decisions can be made and interven-
tions can be performed at the early stages of the disease.

Metabolomics has been proposed as a robust method-
ology to look for non-cellular biomarkers of CNS inva-
sion, owing to its untargeted nature and better sensitivity 
compared to methods such as flow cytometry (Huang and 
Ouyang 2013; Weston et al. 2011). In particular, 1H-NMR 
metabolomics has been extensively used in the search for 
disease biomarkers due to the simplicity of sample prepara-
tion, non-destructive nature, and ability to detect and quan-
tify hundreds of metabolites simultaneously in complex 
samples like blood serum, plasma, urine and CSF (Bollard 
et al. 2005; Lindon et al. 1999).

CSF is the biofluid of choice to probe the CNS condition 
despite the invasive procedure associated with its collection. 
Indeed, several CSF 1H-NMR metabolomics studies have 
addressed a variety of neurological diseases such as multi-
ple sclerosis (Lutz and Cozzone 2011; Sinclair et al. 2010), 
neuron-motor diseases (Blasco et al. 2010), Parkinson’s 
disease (Öhman and Forsgren 2015), Alzheimer’s disease 
(Kork et al. 2009), complex regional pain (Meissner et al. 
2013), several infections including meningitis (Subramanian 
et al. 2005), and rabies (O’Sullivan et al. 2013). Moreover, 
NMR metabolomics has been used to characterize biopsies 

of CNS metastasis from humans as well as CSF samples 
from a LI-rat model (Cho et al. 2012; Sjøbakk et al. 2013). 
Recently, An et al. 2015 reported the use of CSF 1H-NMR 
metabolomics to the diagnosis of LI in lung adenocarcinoma 
patients by comparing the metabolite composition of CSF 
from this group of patients with CSF from matched non-can-
cer patients (An et al. 2015). However, an improved experi-
mental design should include as controls cancer patients 
without LI and, to our knowledge such a study has not been 
undertaken.

Blood serum/plasma 1H-NMR metabolomics analysis has 
been extensively applied to study several hematologic malig-
nancies, in an effort to put forward further diagnostic and 
prognostic biomarkers for diseases such as acute myeloid 
leukemia (AML) (Carrabba et al. 2016; Wang et al. 2013), 
pediatric acute lymphoblastic leukemia (ALL) (Tiziani et al. 
2013), multiple-myeloma (Puchades-Carrasco et al. 2013; 
Lodi et al. 2013), chronic lymphocytic leukaemia (CLL) 
(MacIntyre et al. 2010) and diffuse large B-cell lymphoma 
(Stenson et al. 2016). In contrast, the use blood serum or 
plasma, are largely under-explored as source of biomarkers 
for LI in aggressive B-NHL lymphomas.

In this study we used 1H-NMR metabolomics to charac-
terize CSF and serum from aggressive B-NHL patients in 
order to identify biomarkers for LI by analyzing the CSF 
metabolite profiles of cancer patients with and without LI.

2 � Methods

2.1 � Ethics statement

This study was reviewed and approved by the ethical com-
mittee of the Portuguese Oncology Institute Francisco Gen-
til, Lisbon (Approval Number: GIC/733 + UIC/660) and per-
formed in accordance with the 1964 Helsinki declaration and 
its later amendments.

2.2 � Patient information

Patients diagnosed with aggressive non-Burkitt B-cell non-
Hodgkin lymphoma (diffuse large B-cell and “double hit” 
cases), with medical indication to collect CSF for LI diag-
nosis were included in this study. The cohort included adult 
male and female patients (Table 1), all at an advanced stage 
of the disease (stage IV), with involvement of more than one 
extranodal site and under systemic therapy. LI positive cases 
were diagnosed by the presence of malignant cells in CSF 
by flow-cytometry. Cancer patients who were negative for 
CSF cell invasion (LI negative) were used as controls. At the 
time of collection all patients were under treatment with the 
current standard therapy based on immune-chemotherapy 
(RCHOP).
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In total, 20 patients were included, 13 without (control 
group), and 7 with lymphoma cells identified in CSF (LI 
group). The 1H-NMR analysis of CSF was possible only 
for 5 positive LI cases due to limitations in the sample vol-
umes of two patients. Serum samples were not available for 
one LI-positive case and two LI-negative (control) cases. 
CSF follow-up samples, i.e., samples collected from the 
same patient over the course of intrathecal chemotherapy 
with methotrexate and corticosteroids either as prophylac-
tic (5 LI-negative cancer patients considered high risk for 
CNS infiltration), or therapeutic treatment against LI (2 LI-
positive patients), were obtained. Two to 7 samples were 
collected from each subject during the course of treatment.

2.3 � Sample collection

The CSF samples were collected by lumbar puncture from 
non-fasting patients. After collection, the CSF samples were 
centrifuged to separate the cells for cytological evaluation. 
The volume remaining after routine biochemical analysis 
was stored at −80 °C until NMR analysis. Samples con-
taminated with blood and those containing less than 300 µL 
were discarded. Blood samples were collected in the same 
day as the CSF samples. After collection, the blood serum 
tubes were centrifuged and the serum stored at −80 °C until 
analysis.

2.4 � NMR spectral acquisition, processing, 
and metabolite identification

Prior to NMR analysis, the samples were thawed at room 
temperature. Three hundred microliter of CSF were mixed 
with 300 µL of potassium phosphate buffer 70 mM at pH 
7.0 in 99.8% D2O containing 2 mM NaN3; then 560 µL 
were transferred to 5 mm NMR tubes. All experiments were 

performed at 25 °C in a Bruker Avance II+ spectrometer, 
operating at a frequency of 800.33 MHz for 1H, equipped 
with a 5 mm three channel probe (TXI-Z H/C/N/-D). For 
each CSF sample, one-dimensional 1H-NMR spectra were 
acquired using the NOESY1D pulse sequence with opti-
mized water presaturation (noesygppr1d), as a sum of 128 
free induction decays, with 128 k complex points, using a 
spectral window of 20 ppm (16025.64 Hz), 4 s relaxation 
delay and 10 ms mixing time.

Serum samples were prepared by mixing 300 μL of each 
sample with 300 μL of a sodium phosphate buffer solu-
tion prepared in 80% H2O and 20% D2O; then 560 µL were 
transferred to a 5 mm NMR tube. Serum samples were ana-
lyzed in a Bruker Avance III spectrometer operating at the 
frequency of 600.10 MHz for 1H, equipped with a 5 mm 
four channel cryo-probe (QCI-Z H/C/P/N/-D) and a refriger-
ated autosampler at 25 °C. For each sample a 1D 1H-NMR 
spectrum was acquired using a CPMG pulse sequence with 
water presaturation (cpmgpr1d) as a sum of 32 free induc-
tion decays, with 64 k complex points, using a spectral win-
dow of 20 ppm (12019.23 Hz), 4 s relaxation delay, an echo 
time of 0.3 ms and 126 repetitions of the echo time per scan.

Spectral processing was carried out using the TopSpin 
software version 3.2 (Bruker BioSpin, Rheinstetten, Ger-
many). Briefly, each free induction decay was multiplied 
by an exponential function to produce a line broadening of 
0.3 Hz prior to Fourier transformation. The resulting spectra 
were manually phased and baseline corrected. The chemi-
cal shifts were referenced internally to the anomeric proton 
signal of α-d-glucose at 5.22 ppm. Two-dimensional NMR 
spectroscopy experiments and selective one-dimensional 
experiments were acquired to assist metabolite identifi-
cation (spectral assignments): 2D 1H J-resolved spectra 
were acquired for each sample and homonuclear (1H-1H) 
total correlation spectroscopy (TOCSY), (1H-13C) hetero-
nuclear single quantum correlation spectroscopy (HSQC) 
and 1D-selective-TOCSY experiments were carried out for 
selected samples. For confirmation purposes the identified 
peaks were compared with NMR spectra from pure stand-
ards available in the Human Metabolome Database (HMDB) 
(Wishart et al. 2013) or compared with spectra from selected 
CSF samples spiked with pure compounds.

2.5 � Statistical data analysis

The spectral intensities of the 1D NMR spectra were con-
verted to rectangular matrices where each line corresponded 
to one CSF or serum spectrum and each column to a chemi-
cal shift. 1D spectra were subjected to inter-sample chemical 
shift alignment using the CluPA algorithm (Vu et al. 2011), 
particularly in the regions corresponding to protons near 
charged groups of organic acids and amino acids, for which 
the chemical shift position is more variable. The regions 

Table 1   Patient characteristics and respective CSF clinical biochem-
istry data

*NS not-significant (p value > 0.05)

Control LI p value

N 13 7 –
Age 23–86 32–68 NS*

Gender (M/F) 5/8 4/3 –
Samples
 CSF 13 5 –
 Serum 12 6 –
 CSF and Serum (matched) 11 4 –

CSF biochemistry median (range)
 Glucose (mg/dL) 67 (52–122) 58 (21–59) 0.009
 LDH (Unit/dL) 18 (11–40) 163 (20–295) 0.026
 Total protein (mg/dL) 37 (25–62) 212 (65–603) 0.002
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affected by water presaturation (the HOD signal, at around 
4.70 ppm and urea, at around 5.76 ppm), and the regions 
containing noise only (− 5 to − 1 ppm and 15 to 10 ppm) 
were excluded from the analysis. The dataset was log-trans-
formed to place high and low intensity peaks on a com-
parable scale. Unsupervised analysis was carried out using 
Principal Component Analysis (PCA). Supervised analysis 
of controls and LI spectra was performed by Partial Least 
Squares-Discriminant Analysis (PLS-DA). The predictive 
ability of the PLS-DA models was assessed by predicting 10 
subsets of the dataset on the model created with the remain-
ing data (tenfold cross-validation). The goodness of predic-
tion (Q2) value of the resulting models was used to evaluate 
the cross-validation procedure. A permutation analysis was 
performed in order to further confirm the validity of the 
PLS-DA model (Westerhuis et al. 2008). The permutation 
analysis consisted in the repetition of the PLS-DA model 
100 times by randomly assigning the group labels (control or 
LI), for each new model and calculating the Q2. One hundred 
non-permuted models (true models) were also obtained by 
randomly changing the sample order in the original spectra 
matrix (without changing the group labels), to exclude any 
possibility of over-fitting. The spectral variables responsi-
ble for the differences between control and LI groups were 
identified from the loading weights and variable importance 

to the projection (VIP) values of the cross-validated PLS-
DA models.

The significance of the metabolite differences were fur-
ther evaluated by performing Mann-Whitney-Wilcoxon non-
parametric tests on the spectral areas of the corresponding 
metabolite peaks after local baseline correction; the obtained 
p-values were false discovery rate (FDR) adjusted (q-values) 
(Benjamini and Hochberg 1995). All statistical analyses and 
data processing were performed using in-house scripts and 
the PLS package (Mevik and Wehrens 2007) in R statistical 
software version 3.1.3 (http://www.r-project.org).

3 � Results

3.1 � Characterization of the differences between control 
and LI‑positive groups

Typical 1H-NMR spectra, and representative assignments, 
of CSF and serum from B-NHL patients are shown in 
Fig. 1a, b, respectively. The qualitative analysis of the 
spectra from both biofluids enabled the identification of 
56 metabolites and characteristic protein signals in CSF 
and about 40 metabolites and signals characteristic of 
lipids from lipoproteins and glycoproteins in serum. The 

Fig. 1   Analysis of 1H-NMR spectra from B-NHL patients with and 
without LI (control). a Representative CSF noesygppr1d spectrum 
from a CSF sample; b representative cpmgpr1d spectrum from a 
serum sample. Legend-1: 2-hydroxybutyrate, 2: isoleucine, leucine, 
valine, 3: lactate, 4: alanine, 5: acetate, 6: pyruvate, 7: glutamine, 8: 

citrate, 9: creatine, creatinine, 10: glucose, 11: tyrosine, 12: acetami-
nophen, 13: phenylalanine, 14: formate, 15: histidine, 16: lipopro-
tein–CH3, 17: lipoprotein–CH2, 18: glycoprotein N-acetyl groups; c 
PCA scores scatter plot of CSF spectra; d PCA scores scatter plot of 
serum spectra

http://www.r-project.org
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majority of the assigned metabolites comprised amino 
and organic acids, which were present in both fluids. A 
comprehensive list of assignments is provided in Supple-
mentary Table S1.

To evaluate the differences between control and LI 
groups, both the CSF and serum 1H-NMR spectra were 
analyzed through PCA (Fig. 1). A good separation between 
control and LI groups was observed in the PCA scores plot 
(Fig. 1c), thus indicating significant metabolite differences 
in CSF samples. On the other hand, the serum samples led 
to an overlap in the corresponding scores plot (Fig. 1d), 
therefore reflecting no significant differences in terms of 
serum composition between control and LI groups.

The same set of LI and control CSF spectra was further 
examined by means of a supervised multivariate statisti-
cal method, PLS-DA. This method was chosen in order to 
allow the construction of a predictive multivariate model 
based on CSF 1H-NMR spectra while simultaneously 
enabling the identification of the metabolites with great-
est impact on the discrimination between control and LI 
groups. The robustness of the PLS-DA model was evalu-
ated by cross-validation. By using tenfold cross-validation 
procedure the model presented a goodness-of-prediction 
parameter (Q2) of 0.63, already indicating a good predic-
tive ability. Further validation was performed by permu-
tation analysis. The distributions of Q2 for the permuted 
and true PLS-DA models (Supplementary Fig. S1) clearly 
showed that the permuted models span a wide range of 
negative Q2 values with a median value of −0.67, whereas 
the true models Q2 values result in a skewed distribution 
of only positive Q2 values with a median of 0.63.

The scores plot of the resulting PLS-DA model 
(Fig. 2a), shows a similar separation between groups when 
compared with the corresponding PCA analysis. However, 
the validated PLS-DA model enabled the identification of 
the metabolite resonances which are responsible for the 
separation of control and LI groups through the inspection 
of the model weight loadings and VIP parameter. Only the 
signals corresponding to VIP values > 1 were considered 
as having a significant impact on group separation. This 
criterion was fulfilled for 2-hydroxyisovalerate, alanine, 
acetone, acetylcarnitine, betaine, carnitine, formate, gly-
cine, histidine, isoleucine, lactate, leucine, lysine, methio-
nine, phenylalanine, proline, pyruvate, tyrosine, valine, 
2-hydroxybutyrate, 2-oxoisovalerate and an unassigned 
metabolite, as well as broad protein signals (Fig.  2b; 
Table 2). Moreover, the corresponding loading weights 
revealed that all metabolites were augmented in the LI 
group as compared to controls, except for 2-hydroxy-
butyrate, 2-oxoisovalerate and the unknown metabolite 
whose levels were decreased. The loading weights of 
glucose signals indicate a decrease of this metabolite, 
in accordance with clinical biochemical data (Table 1), 

however it has negligible impact on the separation appar-
ent in the PLS-DA model, i.e., VIP < 1 (Fig. 2b; Table 2).

The statistical significance of the metabolite alterations 
was further assessed by comparing the corresponding spec-
tral areas using non-parametric univariate tests adjusted 
for multiple testing (Table 2). Glycine, alanine, pyruvate, 
acetylcarnitine, carnitine, and phenylalanine as well as the 
protein methyl signals in the CSF spectra (all increased in 
the LI group) were significantly altered between control and 
LI-positive samples (Table 2). In brief, this analysis led to 
the following final set of significantly altered metabolites: 
glycine, alanine, pyruvate, carnitine, acetylcarnitine, and 
phenylalanine.

3.2 � Evaluation of CSF metabolic differences 
during the course of treatment for LI

As part of the clinical procedure, all B-NHL patients for 
whom there is suspicion at diagnosis of CNS invasion are 
subjected to intrathecal chemotherapy in addition to con-
comitant systemic chemotherapy. Some of the CSF samples 
collected over the course of treatment were not analysed by 
NMR due to volume limitation (< 300 µL), however it was 

Fig. 2   PLS-DA model of log-transformed 1H-NMR spectra of CSF 
from B-NHL patients. a Scores scatter plot; b Loading weights 
line plot of Component 1 color-coded with the corresponding vari-
able importance to the model (VIP value). Legend-1: –CH3 signals 
assigned to proteins, 2: 2-hydroxyisovalerate, 3: isoleucine, leucine 
and valine, 4: 2-hydroxybutyrate, 5: 2-oxoisovalerate, 6: lactate, 
7: unassigned, 8: alanine, 9: proline, 10: acetone, 11: pyruvate, 12: 
methionine, 13: lysine, 14: acetylcarnitine, 15: carnitine, 16: betaine, 
17: glycine, 18: histidine, 19: tyrosine, 20: phenylalanine, 21: for-
mate, 22: glucose
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possible to analyse at least two data points for 5 controls and 
2 LI-positive patients.

In order to evaluate the changes in the CSF profile that 
occurred during treatment, the spectra from one patient 
without LI (patient 1, with 3 time points over treatment), 
and one patient diagnosed with LI (patient 2, with 6 time 
point collections), were projected in the previously obtained 
PLS-DA model (Fig. 3). The CSF samples collected from 
patients 1 and 2, immediately before starting intrathecal 
chemotherapy, are indicated with arrows (Fig. 3). Interest-
ingly, the CSF samples from patient 2 over the course of 
treatment are projected near the cloud of controls, and this 
result correlates with the absence of malignant cells in the 
cytological analysis of the respective CSF samples.

Further evaluation of the CSF composition over the 
course of treatment was performed focusing on the metabo-
lite and protein signals with highest significance for group 
discrimination. For the sake of clarity, only the data relative 
to patients 1 and 2 are shown in Fig. 4, but similar trends 
were observed for the other patients followed-up during the 

course of treatment (Supplementary Fig. S2). For the LI-
positive subject (patient 2), alanine, glycine, pyruvate, car-
nitine, acetylcarnitine and the protein signals have a sharp 
decrease from diagnosis time (week 0) to the 3rd week of 
treatment. Phenylalanine showed a slower decrease over the 
same time period (Fig. 4). Thereafter, metabolite and protein 
levels remained nearly constant up to the 13th week of treat-
ment. For the LI-negative subject (patient 1), the metabolite 
and protein levels remained unchanged from diagnosis up to 
the 11th week of treatment (Fig. 4).

4 � Discussion

During the last decade 1H-NMR-based metabolomics devel-
oped to a powerful tool for the identification of biochemi-
cal markers for a variety of human disorders and lifestyles 
(Dona et al. 2014; Gowda and Raftery 2015). Herein, we 
explored the use of this technique to find metabolic markers 
of CNS invasion in aggressive non-Burkitt B-NHL patients. 

Table 2   CSF metabolites relevant for the discrimination between control and LI-positive groups

a VIP (Comp 1), variable importance for discrimination of separating component 1
b q-value from the statistical comparison between LI and control groups (FDR adjusted p-value)
c NS not-significant if adjusted p-value > 0.05

Metabolite Signals (ppm) VIP
(Comp 1)a

Integrals (mean ± SD) Fold change q-valueb,c

Control
(n = 13)

LI
(n = 5)

Alanine 1.47 3.4 1020 ± 284 5687 ± 4162 6 0.005
Glycine 3.55 3.4 87 ± 37 1147 ± 766 13 0.005
Carnitine 3.22 3.0 80 ± 19 1053 ± 957 13 0.037
Pyruvate 2.36 3.0 789 ± 560 2832 ± 1362 4 0.021
Valine 0.98 2.8 393 ± 100 1902 ± 1312 5 NS
2-Hydroxybutyrate 0.89 2.6 158 ± 112 401 ± 282 3 NS
Acetylcarnitine 3.18 2.5 48 ± 14 347 ± 270 7 0.021
Betaine 3.25 2.5 26 ± 11 183 ± 171 7 NS
Isoleucine 0.93, 1.00 2.5 156 ± 43 553 ± 418 4 NS
Protein (–CH3) 0.85 2.4 1307 ± 360 7379 ± 5774 6 0.005
Leucine 0.95 2.4 199 ± 142 524 ± 392 3 NS
Lactate 1.32 2.4 9794 ± 2390 26,191 ± 15,873 3 NS
Acetone 2.21 2.1 109 ± 56 370 ± 475 3 NS
Proline 4.12 2.1 21 ± 5 124 ± 115 6 NS
Lysine 3.01 2.0 149 ± 37 419 ± 259 3 NS
2-Hydroxyisovalerate 0.82, 0.95 1.8 191 ± 268 145 ± 55 −1 NS
Methionine 2.63 1.8 33 ± 8 68 ± 36 2 NS
Unassigned 1.35 1.6 50 ± 40 43 ± 21 −1 NS
2-Oxoisovalerate 1.06 1.5 308 ± 123 434 ± 194 1 NS
Formate 8.45 1.4 107 ± 36 255 ± 114 3 NS
Tyrosine 6.89, 7.18 1.4 219 ± 33 505 ± 317 2 NS
Histidine 7.08 1.3 211 ± 35 366 ± 161 2 NS
Phenylalanine 7.32, 7.36, 7.42 1.3 290 ± 59 625 ± 233 2 0.021
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Serum and CSF samples were analyzed to probe the impact 
of LI on extra- and intra-CNS compartments, respectively. 
An unsupervised multivariate comparison between data 
from control and LI groups revealed that only the latter bio-
fluid was detectably altered by the presence of LI, implying 
the significant contribution of malignant cell metabolism to 
the CSF metabolite profile (Fig. 1b). On the other hand, the 
lack of evidence for alterations in serum metabolites indi-
cates the absence of detectable systemic effects connected 
with invasion of the CNS, in agreement with the “sanctuary 
role” of this location (Basu et al. 2014).

4.1 � Significant metabolite alterations associated 
with LI

The analysis of the PLS-DA loadings and further valida-
tion by univariate analysis enabled the identification of the 
metabolite and protein signals which were significantly 
altered in the CSF samples of the LI group. Among these 
metabolites are several amino acids (alanine, phenylala-
nine and glycine), pyruvate, carnitine and acetylcarnitine, 
which increased in comparison with the control group 
(Table 2). These alterations reflect to some extent the met-
abolic activity of lymphoma cells in the CSF and/or in the 
leptomeninges of the subjects with CNS lymphoma infil-
tration. The increase in the pool of pyruvate is ascribed 
to the Warburg effect, commonly observed in cancer cells 
and tumors, which implies an enhanced aerobic glycolytic 
flux (Griffin and Shockcor 2004; Vermeersch and Styczyn-
ski 2013). However, it is worth noting that the alterations 

in the pools of glucose and lactate depicted in Fig. 2 are 
not significant and these metabolites had no impact on 
the separation depicted in the PLS-DA model (Fig. 2; 
Table 2). On the other hand, the higher level of alanine 
observed in LI-diagnosed patients can be ascribed to a 
shift in the flux from pyruvate to the production of alanine 
via pyruvate transamination (Griffin and Shockcor 2004).

The amino acids glycine, alanine, and phenylalanine, as 
well as the protein signals, were significantly increased in 
the LI group. This alteration may denote disruption in the 
blood–brain barrier permeability, a common feature during 
tumor CNS infiltration (Chamberlain et al. 2014). Elevated 
protein levels were also detected in the routine biochemi-
cal analysis of CSF samples from LI-diagnosed patients 
(Table 1). Special notice should be given to glycine which 
is among the metabolites with greatest influence on the 
discrimination between LI and control groups. Glycine is 
derived from serine, which in turn is synthesized from 
3-phosphoglycerate, a glycolytic metabolite. Glycine and 
serine are the primary donors of one-carbon units for the 
folate and methionine cycles that generate building blocks 
for the synthesis of lipids, proteins, nucleotides and glu-
tathione, components essential for cell growth and prolif-
eration (Li and Zhang 2015). It is presently recognized that 
serine and glycine metabolism play a central role in can-
cer pathogenesis (Locasale 2013 and references therein). 
Therefore, we propose that the significantly incremented 
glycine levels in the LI group represent an important puta-
tive diagnostic and prognostic biomarker. In the brain, gly-
cine is an inhibitory neurotransmitter and elevated levels 
have been associated with brain tumors (Kinoshita and 
Yokota 1997). Furthermore, increased glycine levels have 
been correlated with tumor aggressiveness and progression 
in triple negative breast cancer (Cao et al. 2014), in locally 
advanced rectal cancer (Redalen et al. 2016) or aggressive 
prostate cancer (McDunn et al. 2013).

The increased levels of carnitine and acetylcarnitine in 
the LI group are probably associated with disturbed lipid 
metabolism, which is one of the hallmarks of cancer cell 
metabolism (Vermeersch and Styczynski 2013). For exam-
ple, lipid accumulation was observed in the cytoplasm of 
metastatic cancer cells from solid brain tumors (Sjøbakk 
et al. 2013); and fatty acid synthesis was up-regulated in 
an in-vitro model of a B-cell type lymphoma (primary 
effusion lymphoma) (Bhatt et al. 2012). Carnitine acts as 
a transporter of acetyl and acyl groups between the cytosol 
and the mitochondria. Acetyl groups are transported via 
acetylcarnitine from the mitochondria to the cytosol where 
they can be used for fatty acid synthesis (Bhatt et al. 2012; 
Pacilli et al. 2013). We speculate that the higher levels 
of carnitine and acetylcarnitine are related with enhanced 
lipid biosynthesis in malignant cells.

Fig. 3   Projection of CSF samples from B-NHL patients into the 
scores plot of the PLS-DA of 1H-NMR spectra from control and LI 
patients. The scores from patient 1 represent subsequent CSF col-
lections from a control patient and the scores from patient 2 repre-
sent CSF samples collected from an LI patient during the course of 
intrathecal treatment. The first sample from patient 1 is indicated with 
a black arrow; the first sample from patient 2 (before treatment) is 
indicated with a grey arrow
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4.2 � CSF alterations during the course of LI treatment

The availability of several samples from the same patient 
collected over the course of intrathecal therapy enabled the 
evaluation of the metabolite changes connected with the 
chemotherapeutic intervention. After 3 weeks of treatment 
there were differences in the CSF metabolic profile of LI 
positive patients, but not in the profile of control patients. 

In fact, the levels of the metabolites with greatest discrimi-
natory impact, i.e., glycine, alanine, pyruvate, acetylcarni-
tine, carnitine, and phenylalanine, decreased after treatment 
initiation in those cases. These changes correlate with the 
absence of malignant cells in CSF of those patients after 
treatment, as evaluated by cytological examination.

In spite of the pathophysiology differences between non-
Hodgkin lymphoma and other hematologic malignancies, it 

Fig. 4   Variation of CSF 
metabolite levels at diagnosis 
and during intrathecal treatment 
of a control (patient 1) and an 
LI patient (patient 2)
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is interesting to note that the levels of some of the metabo-
lites decreasing during LI remission, seem to correlate with 
remission in AML, ALL and multiple myeloma patients. 
Indeed, decreases in the levels of alanine and phenylalanine 
have been observed in AML patients at remission (Carrabba 
et al. 2016) and decreases in the levels of carnitine and ace-
tylcarnitine have been observed in multiple myeloma (Lodi 
et al. 2013). Therefore, the proposed biomarkers may simi-
larly serve as useful indicators of the treatment efficacy.

4.3 � Robustness of the predictive model and study 
limitations

One of the most important advantages of the untargeted 1H-
NMR approach derives from the high density of information 
available in a single spectrum, reflecting the signature of 
hundreds of metabolites in a complex mixture. The combina-
tion of 1H-NMR and supervised multivariate statistical tools, 
such as PLS-DA, provides a powerful toolbox for biomarker 
identification and further translation to a reliable diagnostic 
model (Lindon and Nicholson 2008; Xia et al. 2013). In this 
work, 1H-NMR spectra of CSF samples were used to con-
struct a predictive model for LI diagnosis based on a super-
vised analysis (PLS-DA). Our PLS-DA model has good 
predictive ability as assessed by the cross-validation and 
permutation tests. Importantly, the goodness of the model 
was further attested by the correct classification of the CSF 
samples from patients over the course of LI therapy (Fig. 3).

We are aware of the major limitation related with a small 
cohort consisting of 13 control and 5 LI positive patients. 
This is due to the low percentage of aggressive B-NHL cases 
developing LI, well recognized in the literature, but also 
to the insufficient volume of some CSF samples after the 
entire routine clinical laboratory analysis was performed. 
Nevertheless, this study provides proof of concept of the 
application of 1H-NMR metabolomics in the diagnosis of LI 
from aggressive B-NHL patients, where early markers for 
CNS infiltration may have a significant impact on therapy 
and clinical outcome. Before our findings can be translated 
to a clinical diagnostic test, further studies involving larger 
sample groups are necessary. Ideally, a CSF set of samples 
should include an equivalent proportion of control and LI-
positive samples to enable the appropriate testing and vali-
dation of the proposed multivariate models and biomarker 
panel.

5 � Conclusions

Leptomeningeal tumor infiltration still presents diagnostic 
challenges, particularly in hematologic malignancies such as 
the aggressive lymphomas and acute leukemia, often requir-
ing cytological and phenotypic analysis of a series of CSF 

samples collected over time for diagnostic confirmation. In 
this work, an NMR metabolomics strategy was applied to a 
small cohort of samples from aggressive B-NHL patients 
with and without CNS infiltration diagnosis. A multivari-
ate model based on 1H-NMR spectra of CSF was obtained 
which allowed the identification of a set of putative biomark-
ers for LI: glycine, alanine, pyruvate, carnitine, acetylcarni-
tine, and phenylalanine. The reliability of these metabolite 
biomarkers is strengthened by the observation of complete 
reversal of the LI metabolic traits upon intrathecal treatment. 
Despite the limited sample size, the results are definitely 
encouraging and stimulate further investigation with larger 
cohorts, which are essential for biomarker validation and 
translation into clinical application.
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