
Prediction of membrane protein structures with
complex topologies using limited constraints
P. Barth1, B. Wallner1, and D. Baker2

Department of Biochemistry, University of Washington, Seattle, WA 98195

Edited by William F. DeGrado, University of Pennsylvania School of Medicine, Philadelphia, PA, and approved December 12, 2008 (received for review
August 25, 2008)

Reliable structure-prediction methods for membrane proteins are
important because the experimental determination of high-
resolution membrane protein structures remains very difficult,
especially for eukaryotic proteins. However, membrane proteins
are typically longer than 200 aa and represent a formidable
challenge for structure prediction. We have developed a method
for predicting the structures of large membrane proteins by con-
straining helix–helix packing arrangements at particular positions
predicted from sequence or identified by experiments. We tested
the method on 12 membrane proteins of diverse topologies and
functions with lengths ranging between 190 and 300 residues.
Enforcing a single constraint during the folding simulations en-
riched the population of near-native models for 9 proteins. In 4 of
the cases in which the constraint was predicted from the sequence,
1 of the 5 lowest energy models was superimposable within 4 Å on
the native structure. Near-native structures could also be selected
for heme-binding and pore-forming domains from simulations in
which pairs of conserved histidine-chelating hemes and one ex-
perimentally determined salt bridge were constrained, respec-
tively. These results suggest that models within 4 Å of the native
structure can be achieved for complex membrane proteins if even
limited information on residue-residue interactions can be ob-
tained from protein structure databases or experiments.

de novo protein structure prediction � ROSETTA

Membrane proteins constitute �30% of all proteins and
perform crucial functions that range from cell–cell com-

munication to energy transduction to the transport of small key
molecules. Despite recent progress, experimental high-
resolution structural determination for membrane proteins is
still difficult, making structure prediction an important alterna-
tive approach.

Membrane proteins can be classified into 2 groups: transmem-
brane helical (TMH) bundles and beta-barrels. For TMH pro-
teins, the physical constraints imposed by the anisotropic envi-
ronment of the lipid bilayer lead to characteristic distributions of
amino acids that depend on their depth in the membrane. These
observations have enabled the development of topology predic-
tion schemes that have become quite sophisticated and powerful
over recent years (1). In principle, 3-dimensional (3D) structure
modeling based on an existing structure of a close homolog can
provide atomic-level structural detail (2–4). However, with few
structures known, homology modeling cannot yet be universally
applied to membrane protein structures. Previous studies have
shown that de novo structure prediction can be successful for
small membrane protein domains (5) and can generate models
that can be refined to higher resolution (6). However, structure
prediction of full-length membrane proteins is hindered by the
considerable size of these polypeptides and represents a formi-
dable unsolved challenge. Fortunately, the conformational space
sampled by the majority of TMH pairs can be described by a
limited number of TMH orientations (7) and recurrent sequence
motifs such as the well-studied GXXXG motif (8) appear to
favor one particular TMH pair configuration. A significant
fraction of membrane proteins bind cofactors with well-defined

coordination geometries, therefore imposing further constraints
on the structure of TMH assemblies. To take advantage of these
conformational restrictions in structure-prediction approaches,
we have developed a method to generate models of membrane
proteins from sequence in which TMH orientations are con-
strained using residue-residue interactions either predicted from
sequence/structure correlations or derived from experiments. In
this study, we describe the validation of the method on a set of
membrane proteins with diverse size, topologies, and functions.

Results
Folding with Constraints. We adapted a technique recently devel-
oped for sampling nonlocal beta-sheet topologies (9) to fold
membrane proteins from sequence in which the relative orien-
tation of TMH pairs is fixed at two particular positions during
folding by long-range pairwise constraints. Briefly, for each
long-range constraint between two helices, a ‘‘fold tree’’ is
constructed for the polypeptide chain in which two C� positions
from the two helices are connected and fixed in space during
folding (9). To allow for this non-local connection in the tree, the
peptide chain is cut between the two connected positions (see
Materials and Methods and Fig. 1). The cut is randomly selected
within predicted loop regions of the proteins with a bias toward
long loops. This avoids disrupting subdomains composed of few
TMHs connected by short loops, which can be folded properly
using continuous chain fragment insertion methods that we have
developed previously (5). In a typical run, we generate models
using many independent trajectories in which a single randomly
selected interaction from a set of predicted TM helix–helix
constraints is enforced (Figs. S1–S3). TM helix–helix interac-
tions enriched in low energy models are identified and then used
to seed a subsequent round of model generation (Fig. S4).
During this process, the average fraction of trajectories con-
strained with a near-native interaction increased from 16% at
iteration 1 to 24% at iteration 2 and to 29% at iteration 3.
However, in most cases, the coarse-grained models with the
lowest rmsd to the native structure cannot be identified by
energy alone. The final coarse-grained models are therefore
clustered in structurally related families and refined at the
all-atom level (see Materials and Methods).

Structure Generation Using Predicted Constraints. Construction of TM
helix–helix constraint library. To predict structural constraints from
sequence information, we developed a method that extracts the
configuration of TMHs at interacting positions from a database
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of TMH pairs of known structures (see Materials and Methods,
Fig. S1). This database of interacting TMH pairs is searched for
local sequence matches with all possible pairs of predicted TMHs
in the query sequence using a sliding window (see Materials and
Methods, SI Text). This scanning produces for each pair of
predicted helices in the query a library of possible interaction
geometries defined by the interacting positions and the backbone
conformations of the TMH pair from the database. In each
folding trajectory, a single randomly selected predicted interac-
tion in the library is used to constrain a particular helix pair to
the helix–helix arrangement of the structural template (see
above). Ten predicted interactions are included for each helix
pair, which allows correct models to be generated despite the low
overall accuracy of the interaction library since only one of the
10 need be correct (Figs. S2 and S3).
Validation of the Method. To test the ability of the method to select
relevant contacts from the structure database of TMH pairs and
use these constraints to generate near-native membrane protein
structures, we generated structures for membrane proteins with
different sizes and topological complexities. The 4 TMH sub-
domain of bacteriorhodopsin and the 4 TMH subunit of V-type
Na� ATPase have simple topologies, are limited in size (�150
residues), and can be folded correctly to near-native structure
without any long-range constraint (5, 6). We carried out multiple
folding trajectories for these polypeptides, each enforcing a
single randomly selected interaction from the library of con-
straints and generated similar near-native structures albeit in
lower proportion. The 5 TMH subdomain of cytochrome c has

a more complex topology with a long loop connecting the first
and second helix. The lowest rmsd models generated without
constraints did not recapitulate completely the native topology and
had 70% of the residues superimposable on the native structure to
within 4 Å (Table 1). When models were generated with a single
randomly selected predicted constraint, however, a 40-fold enrich-
ment in low rmsd structures was observed and the lowest rmsd
structure was native-like with 93% of the residues superimposable
on the native structure (Table 1). After all-atom refinement, 1 of the
top 5 lowest energy models was native-like and had 100% of the
residues superimposable on the TMH region of the native structure
(Fig. 2A). The lowest rmsd model of the full-length 7 TMHs
bacteriorhodopsin generated without constraint was not entirely
native-like with 68% of residues superimposable on the native
structure. By contrast, when bacteriorhodopsin was folded con-
straining a single randomly selected constraint, a 9-fold enrichment
in low rmsd structures was observed and the lowest rmsd model had
93% of the residues superimposable on the native structure (Table
1). After all-atom refinement, 1 of the top 5 lowest energy models
was native-like and had 99% of the residues superimposable on the
TMH region of the native structure (Fig. 2B).

We also tested the method on proteins with complex topol-
ogies composed of 6 and 7 TMHs: Lac permease N- and C-
terminal domains, sensory rhodopsin, halorhodopsin, bovine
rhodopsin, and the beta2 adrenergic receptor. Both subunits of
lactose permease have a complicated topology with each of the
TMHs making little contact with the next or previous TMH in
the sequence. Constraining the chain with a single randomly
selected constraint during folding slightly increased the fraction
of near-native models for the C-terminal subunit compared with
the same simulations performed without constraints (Table 1).
The lowest rmsd models had 82% and 99% of the residues
superimposable on the TMH region of the native structure for
the N- and C- terminal domains, respectively (Table 1). When
refined at all-atom, native-like models clustered in one of the
largest family of structures but were not the lowest in energy.
Polar residues present in the pore region of the transporter
become exposed to the hydrophobic region of the lipid bilayer in
each isolated subunit, therefore penalizing energetically near-
native models. Sensory rhodopsin and halorhodopsin show little
sequence identity (�30%) but are structurally similar to bacte-
riorhodopsin. The structure of these two targets was modeled de
novo with a single randomly selected constraint selected from
the structure database of TMH pairs (Table 1). A 3- to 5-fold
enrichment in low rmsd structures compared to simulations
performed without constraints was observed. The lowest rmsd
model generated for sensory rhodopsin has 93% of the residues
superimposable on the native structure. Except for the long
distorted beta hairpin connecting the second and the third TMH,
the lowest rmsd model of halorhodopsin is native-like with 89%
of the residues from the TMH region superimposable on the
native structure (Table 1). Due to the absence of the chro-
mophore and to the particular constraints between TMH pairs
for these targets, the near-native models were too tightly packed
in the region binding the chromophore. Consequently, these
models could not be recovered and refined at all-atom and less
accurate models were selected by energy (Table 1). Bovine
rhodopsin and the beta2 adrenergic receptor have nearly 300
residues, a complex topology characterized by distorted helices,
a significant number of contacts between helices not adjacent in
sequence, and a long loop buried in the core of the TMH bundle
connecting the second and third helix. Models were generated de
novo using a single randomly selected constraint from the
structure database of TMH pairs. No enrichment in low rmsd
models was observed for bovine rhodopsin. A 6-fold enrichment
in low rmsd models was observed for the beta2 adrenergic
receptor and the lowest rmsd model had 74% of the residues
from the TMH region superimposable on the native structure

Fig. 1. Ab initio folding protocol with long-range interactions. Interactions
can be predicted from sequence information using a database of TMH pairs of
known structure (Fig. S1) or can be inferred from experiments (see Materials
and Methods). Once an interaction is selected, the two helices connected
through space by that interaction are inserted and folded in the membrane.
Adjacent individual TMHs are then randomly selected and folded in the
membrane by Monte-Carlo fragment insertion sampling. After all TMHs are
assembled in the membrane, the initial chain break is closed.
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(Table 1). These models were not close enough to the native
structure to be selected by energy alone.

Structure Modeling with Positions of Contacts Inferred from Experi-
ments. Construction of libraries of experimentally derived structural
constraints. Experimental data were incorporated by restricting
the sequence profile search described above to database of
template helix pairs selected using the constraint information
(see Materials and Methods). This approach generated libraries
of interactions sampling the conformational diversity consistent
with the chemical interactions identified from experiments.
Modeling with constraints from cofactor binding. The presence of a
cofactor imposes stringent constraints on the protein structure
that can be judiciously exploited in structure prediction. One
such cofactor is the heme, a FeIII atom chelated by a porphyrin
cycle and bound to the protein by 2 histidines providing the 2
axial nitrogen atom ligands of the iron. We modeled the
distribution of orientations between the histidines using a library
of non-homologous pairs of helices binding hemes extracted
from the protein structure database (see Materials and Methods).
The ability of our method to generate near-native structures of
heme-binding membrane proteins using such constraints was
tested on the heme-binding subunits of fumarate reductase and
cytochrome bc1. A 3- and 197-fold enrichment in low rmsd
models was observed for fumarate reductase and cytochrome
bc1, respectively. While the exact positions of interfacial helices
and unconstrained loops were not well predicted, in the TMH
core regions, the lowest rmsd models had 92% and 82% of the
residues superimposable on the native structure for fumarate
reductase and cytochrome bc1, respectively (Table 1). After
all-atom refinement, the lowest energy model among the two

largest clusters was native-like and had 100% and 80% of the
residues superimposable on the TMH region of the native
structure for fumarate reductase and cytochrome bc1, respec-
tively (Table 1 and Fig. 2E and F).
Modeling with constraints from compensatory mutations. The C-
terminal domain of lactose permease was folded by constraining
a single randomly selected interaction from the structure data-
base compatible with the salt bridge between Asp 237 and Lys
358 inferred from mutagenesis data [(10), see Materials and
Methods]. A 48-fold enrichment in low rmsd models was ob-
served compared with simulations performed without constraint
(Table 1). The lowest rmsd model had 100% of the residues
superimposable on the native structure (Table 1). After all-atom
refinement, one of the near-native models, which belong to the
second largest cluster was 1 of the top5 lowest energy model and
had a Calpha rmsd of 4.2 Å to the native structure (Fig. 2D).

Discussion
Despite the crucial functions performed by membrane proteins
in living cells, few high-resolution structures of these proteins
have been solved to date. Reliable methods to predict their
structures are therefore of high interest but creating such method
is a formidable challenge given the size and the complexity of
membrane proteins. We provide in this study a step toward a
solution to the sampling problem for TMH assemblies, which is
conceptually similar to that proposed recently for beta-sheet
proteins (9). We developed a method that folds membrane
proteins by constraining helix–helix packing arrangements at
particular positions predicted from sequence or suggested from
experiments to mediate the interaction between the TMHs. We
validated the method by generating models for 12 membrane

Table 1. Structure prediction of membrane proteins.

No. of
TMHs/no.

of residues Constraint type

Highest
maxsub in

5,000
simulations

(old)

Highest
maxsub in

5,000
simulations

(new)

Enrichment in
high maxsub
models (new
versus old)

Highest
maxsub

(full/TMH)

Highest maxsub
among 5 lowest
energy models

(full/TMH)

Bacteriorhodopsin
subdomain

4/123 One predicted 1.0 1.0 0.1 1.0/1.0 1.0/1.0

V-type ATPase subunit 4/145 One predicted 1.0 1.0 0.5 1.0/1.0 0.99/1.0
Cytochrome c 5/191 One predicted 0.70 0.88 40.3 0.93/0.96 0.91/1.0
Lac permease Nterminal

subunit
6/190 One predicted 0.71 0.65 0.1 0.74/0.82 —

Lac permease Cterminal
subunit

6/185 One predicted 0.82 0.91 1.4 0.98/0.99 —

Bacteriorhodopsin 7/227 One predicted 0.68 0.83 8.7 0.93/0.96 0.89/0.99
Sensory rhodopsin 7/217 One predicted 0.71 0.81 3.2 0.93/0.95 0.52/0.54
Halorhodopsin 7/239 One predicted 0.64 0.73 4.5 0.79/0.89 0.48/0.57
Bovine rhodopsin 7/278 One predicted 0.56 0.52 0.2 0.58/0.69 0.40/0.53
Beta2 adrenergic

receptor
7/282 One predicted 0.46 0.55 6.3 0.61/0.74 0.36/0.46

Fumarate reductase 5/216 Two pairs of histidine
binding hemes

0.59 0.73 3.2 0.86/0.92 0.84/1.0

Cytochrome bc1 5/222 Two pairs of histidine
binding hemes

0.43 0.62 197.2 0.66/0.82 0.55/0.80

Lac permease Cterminal
subunit

6/185 One experimentally-
determined salt
bridge

0.82 0.99 47.6 1.0/1.0 —

The highest maxsub in 5,000 simulations generated without constraints [using the �old� version of RosettaMembrane (5)] and with constraints (‘‘new’’, current
version of RosettaMembrane) is reported in columns 4 and 5, respectively. Maxsub is the fraction of residues in the model that are superimposable within 4 Å
to the X-ray structure of the target (18). The increase in the frequency of models with maxsub greater than or equal to that in column 4 in the constrained runs
is reported in column 6. The model closest to the native structure generated by the current version of RosettaMembrane using the protocol described in Materials
and Methods is reported in column 7 with maxsub given for both the full-length (�full�) and the transmembrane helical core regions [�TMH�, as predicted by
Octopus (15)]. The most accurate (highest maxsub) model among the 5 lowest all-atom energy models is reported in the last column for each target except the
isolated subunits of the Lac permease.
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proteins of diverse size, topologies and functions (Table 1). By
enforcing a single constraint during the folding simulations, the
population of near-native models was enriched for 9 of the
targets with more than 4 TM helices (Table 1). Using a single
randomly-selected constraint predicted from sequence informa-
tion alone, near-native structures were generated for the 5 TMH
domain of cytochrome c, full-length bacteriorhodopsin, sensory
rhodopsin, the C- terminal domain of the lactose permease, and
for the TMH core domain of halorhodopsin. Using experimen-
tally derived constraints, native-like structures were obtained for
the C-terminal domain of the lactose permease and for the
heme-binding TMH regions of the fumarate reductase and
cytochrome bc1. For 7 of these 12 proteins, the most accurate
models were close enough to the native structure to be selected
based their very low energies.

Our extraction by sequence profile matches of plausible
interactions between TMHs from the structure database shows
relatively low accuracy, but since 10 possibilities are considered
for each pair during folding, high accuracy is not necessary. This
is analogous to the selection of short peptide fragments based on
local sequence in soluble protein structure prediction using
ROSETTA. The libraries of local structures and TM helix–helix
interactions represent the ensemble of states consistent with
local sequence, which is frequently quite ambiguous. Successful
prediction requires only that at least one of the helix–helix
interactions in the library selected for a given helix pair is correct.
Our results suggest also that non-native interactions generating
high-energy models can be filtered out from the initial library by
a simple iterative refinement protocol, therefore enriching the
library from 16% to nearly 30% of native-like interactions. In the
future, information from the analysis of coevolving residues (i.e.,
contact predictor) may be used to improve the prediction of pairs
of interacting residues at TMH interfaces. A recent study

performed on membrane proteins suggests that sparse residue-
residue contacts can now be predicted with high specificity from
coevolution information (11).

While high-resolution structures are difficult to obtain for
membrane proteins, many experiments can be performed to
probe residue-residue interactions and derive effective con-
straints to feed into our structure prediction method. We have
used 2 classes of experimental data from which structural
information with different level of accuracy can be extracted.
The binding of cofactors provides many structural constraints
providing the ligand residues are known as illustrated by our
results for heme-binding proteins. More sophisticated spectro-
scopic data could be used in the future to further constrain the
orientation of the cofactor with regard to the membrane bilayer.
Interactions between non-covalently linked residues inferred
from compensatory mutations provide structural information of
lower resolution that can still be useful as illustrated by our
results with the C-terminal subunit of the lactose permease.
Disulfide bonds between cysteines and chemical cross-links are
widely used to probe residue-residue interactions in membrane
protein (12) and such constraints can be readily input into our
structure calculation procedure.

Using one constraint, our method generated near-native struc-
tures of membrane proteins with up to 6 TMHs and on larger but
topologically rather simple prokaryotic GPCR-like proteins. The
lower accuracy models obtained for the topologically more complex
eukaryotic GPCRs clearly point to several directions for improve-
ment. First, these results suggest that for such proteins multiple
constraints may be necessary to obtain accurate models. Second, as
in bovine rhodopsin and the beta2 adrenergic receptor, long
partially buried loops can make substantial contacts with the core
of the TMH domain and may partially dictate the precise topology
of the TMH bundle. Therefore, it could be advantageous to fold
large loops in the early stages of the folding process. The precise
conformation of long loops is often difficult to predict by the
insertion of short peptide fragments. As suggested by the work of
Zhang and Skolnick (4), the identification and sampling of longer
peptide fragments may better capture sequence/structure signals
governing the conformation of long loops. Third, many membrane
proteins covalently or reversibly bind ligand or cofactors in specific
cavities of their structures. If the cofactors/ligands are not modeled
explicitly in the structure prediction calculations, models that are
too tightly packed at these particular binding sites are generated
(e.g., for sensory rhodopsin). A solution would be to model
explicitly at the coarse-grained level the ligand during the folding of
the polypeptide chain, providing constraints can be derived for
binding the ligand. Finally, while the all-atom refinement of the
coarse-grained models was in many cases able to discriminate by
energy near-native from non-native structures, it is very sensitive to
small inaccuracies in the constraints enforced during coarse-
grained folding. More effective refinement strategies may involve
the sampling of rigid-body degrees of freedom of the TMHs to
overcome the inaccuracies in the predicted TM helix–helix inter-
action templates.

While the method has not been tested yet in a blind prediction
experiment, our results suggest that it can be used to predict
near-native structures of membrane-embedded single polypep-
tide chains, providing TM helix–helix interactions can be pre-
dicted from sequence or extracted from experiments. In this
study we experimented with the use of single constraints and
could identify near native models using energy based selection
for membrane proteins with up to 230 residues; for larger
proteins, however, multiple constraints are likely to be necessary
to obtain accurate models. Such models should prove useful to
guide and rationalize future experimental investigations on the
many systems for which no high-resolution structural informa-
tion is yet available.

Fig. 2. Prediction of membrane protein structures. Superposition between the
most accurate (highest maxsub) models of the 5 lowest all-atom energy models
(magenta) and X-ray structure of: chain A of cytochrome c (A), Bacteriorhodopsin
(B), chain H of fumarate reductase (E), and chain D of cytochrome bc1 (F). Because
individual subunits of the Lactose permease virtually expose pore-lining polar
residues to the lipids, near-native structures cannot be selected by energy alone.
The cluster size was used as an initial filter for the selection of the models.
Superposition between the most accurate (highest maxsub) of the lowest all-
atom energy model in the 2 largest clusters (magenta) and X-ray structure of:
N-terminal subunit of lactose permease (C, view from the channel), C-terminal
subunit of lactose permease (D, view from the channel).
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Materials and Methods
Selection of Long-Range Pairwise Interactions from a Library of TMH Pairs with
Known Structure. A library of 621 interacting transmembrane helical pairs was
constructed from 79 high-resolution membrane proteins chains with �90%
pairwise sequence identity, taken from the protein database as of April 2007.
The boundaries for TM helical segments were taken from the MPtopo data-
base (13). Two helices were considered to interact if 5 or more pairs of C�

atoms were within 8 Å.
Sequence profiles were constructed for all helical pairs in the database by

PSI-BLAST (14) with the -j 2 option using the BLOSUM62 substitution with
E-value cutoff 10�3 against Uniref90 (uniref) for the whole protein chain
sequence and parsing out the specific regions corresponding to the TM helical
pairs. To ensure that no templates from homologs were present in the final
library, all hits to templates from proteins with a BLAST hit better than E-value
5E�2 to the query sequence were filtered out.

To search the library, a sequence profile is constructed for the query
sequence as described above and the specific regions corresponding to trans-
membrane regions predicted by Octopus (15) are parsed out. In the next step
each possible pair of predicted transmembrane helices is compared with the
profiles for each pair in the library using a gapless log average profile-profile
scoring (16) over a 14-residue sliding window, other window sizes were tried
but 14 performed best (data not shown). To compare a helix pair in the library
(H1,H2) with a helix pair from the query (h1, h2), H1 is compared with h1 by
sliding one window over H1 and one over h1 and calculating the log average
profile-profile score for each position of the two windows; the same is done
for H2 and h2. Only registers in which all residues in the two 14 residue
windows are aligned are considered. The final score for a match is the sum of
the best scores from the H1-h1 and H2-h2 comparisons. This procedure gives
a score for each possible position of the 4 windows (Fig. S1). Overlaps between
the windows were avoided by requiring that the center of the window on h1
be separated by at least 20 residues from the center of the window on h2. Once
a match is found, the backbone orientation (i.e., coordinates of the N, C� and
C positions) for the closest point of interaction (closest distance) in the
matching windows for the template helices H1 and H2 is copied to the
equivalent positions in query helices h1 and h2. By taking the closest point of
interaction instead of the residues in the center of the windows, potential
helix–helix interaction motifs do not need to be in the middle of the window
to be captured.

Long-Range Pairwise Interactions Extracted from Experiments. The sequence
matching technique described above was applied to subsets of template
helix pairs preselected based on the experimental data. If experimental
data suggest that 2 helices interact via a particular pairwise interaction, the
template library of interacting TMH pairs with known structure is searched
for local sequences matching that particular interaction. As for the pure
‘‘sequence only’’ search (see above), each selected template is used to
constrain the configuration of the 2 helices during folding by fixing the
backbone coordinates of the 2 interacting positions to those found in the
template. In our study, 2 different experimentally derived pairwise con-
straints were considered: (i) constraints for pairs of histidines that chelate
hemes by providing the 2 axial nitrogens coordinating the FeIII were
selected from a library of high-resolution heme-binding protein structures;
(ii) constraints for pairs of polar residues involved in salt bridges were
derived from a library of interacting TMH pairs interacting via the salt
bridge.

Ab Initio Folding Protocol with Long-Range Constraints. Once a long-range
constraint between 2 helices is identified, a fold tree is constructed for the
polypeptide chain in which 2 C� positions from these 2 helices are con-
nected and fixed in space during folding (9). To allow for this non-local
connection in the tree, the peptide chain is cut at a randomly selected
position within predicted loop regions of the proteins with a bias toward
long loops. The folding process involves the following steps (Fig. 1): (i) 2
helices connected through space by the long-range interaction are inserted

in the membrane; (ii) individual adjacent TMHs are randomly selected and
inserted in the membrane by Monte-Carlo fragment insertion sampling as
described in ref. 5. This process is repeated until all TMHs are folded in the
membrane; and (iii) once all TMHs and connecting loops are folded, a final
cycle of fragment insertions is performed to close the chain break created
by the initial cut in the polypeptide chain. For each protein, a total of two
hundred thousand coarse-grained models were generated in several steps
using an iterative approach to select the most promising set of TM helix–
helix interactions (SI Text and Fig. S4). In most cases, the coarse-grained
models with the lowest rmsd to the native structure could not be identified
from energy alone, which prompted us to refine them at the all-atom level.
The ‘‘old’’ protocol used as the control in Table 1 carries out the stage 2
continuous chain fragment insertion for the whole trajectory (5).

All-Atom Refinement of Coarse-Grained Models. The full-atom structure relax-
ation of the coarse-grained models is performed using an all-atom potential
developed recently for membrane proteins (6). Instead of relaxing all coarse-
grained models, we implemented a more efficient refinement protocol that
aims at selecting rapidly which models are likely to occupy energy minima in
the all-atom energy landscape. Coarse-grained models were first clustered
into structurally related families. The clusters with energies below the median
energy were selected for all-atom refinement. For each of these selected
clusters, both the center and the 10 lowest energy structures were refined
using a stochastic Monte Carlo minimization protocol. Each move in this
landscape involves a random perturbation of backbone torsion angles fol-
lowed by discrete optimization of side-chain rotamers and then by gradient-
based local minimization on all conformational degrees of freedom (17). A
faster version of the original refinement protocol for membrane proteins (6)
was used that consists of 3 iterative cycles of side-chain rotamer repacking and
gradient-based minimization on backbone and side-chain degrees of free-
dom. In the initial cycle, the repulsive component of the Lennard-Jones
potential is heavily damped. The damping factor is then iteratively decreased
in the next cycles. This procedure eases the transition from centroid to atomic
structures by accommodating and iteratively relaxing structural inaccuracies
present in the centroid models. The lowest energy all-atom structure was
selected as the final refined structure for each starting centroid model (SI Text
and Fig. S5).

Choice of the Benchmark Test. The membrane proteins used to validate the
method were selected based on several criteria: first, a structure deter-
mined experimentally by X-ray crystallography at a resolution �3.5 Å;
second, a protein length between 100 and 300 residues with 4 to 7 TMHs
and third, a range of topologies with different level of complexities
and structural irregularities such as TMH kinks, coils and interfacial
regions. To generate a dataset of proteins for which contacts could be also
deduced from experiments, we incorporated a number of proteins with
residue-residue contacts identified by different experimental techniques
(Table 1).

Metric for Assessing the Structural Quality of the Models. The quality of a
structural model is usually measured by the root mean square deviations
over a given set of atoms between the model and the experimentally
determined structure. For larger proteins, however, large deviations from
the native structure in localized regions often lead to large rmsd values,
which can mask the quality of the prediction in the other regions of the
protein. For the large proteins studied in this work, the proportion of
residues superimposable within 4 Å on the native structure [as measured by
maxsub (18)] was found to be a more suitable metric of the quality of the
predictions.
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