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A significant portion of biomass sources like straw and wood is

poorly degradable and cannot be converted to biofuels by

microorganisms. The gasification of this waste material to

produce synthesis gas (or syngas) could offer a solution to this

problem, as microorganisms that convert CO and H2 (the

essential components of syngas) to multicarbon compounds

are available. These are predominantly mesophilic

microorganisms that produce short-chain fatty acids and

alcohols from CO and H2. Additionally, hydrogen can be

produced by carboxydotrophic hydrogenogenic bacteria that

convert CO and H2O to H2 and CO2. The production of ethanol

through syngas fermentation is already available as a

commercial process. The use of thermophilic microorganisms

for these processes could offer some advantages; however, to

date, few thermophiles are known that grow well on syngas and

produce organic compounds. The identification of new isolates

that would broaden the product range of syngas fermentations

is desirable. Metabolic engineering could be employed to

broaden the variety of available products, although genetic

tools for such engineering are currently unavailable.

Nevertheless, syngas fermenting microorganisms possess

advantageous characteristics for biofuel production and hold

potential for future engineering efforts.
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Introduction
The use of oil and other fossil resources as transportation

fuels and commodity chemicals is deeply engrained in

today’s society, but use of these resources is unsustain-

able. The unsustainable nature of fossil fuels stems from

their finite reserves and their negative environmental

impact: combustion of fuels releases carbon dioxide

and various pollutants, such as sulfur and nitrogen oxides.
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Thus, there is a need for alternative processes to produce

energy and chemicals [1�,2]. The transition towards a

sustainable energy supply will take considerable time. In

the meantime, short-term solutions will aim to lessen the

environmental impact of fossil fuels [3].

Cleaner fuels are obtained through improved refining

technologies and through the addition of synthetic fuels

or ethanol. These latter options have interesting future

potential as they can be derived from biomass. Bioethanol

is predominantly produced through the fermentation of

easily degradable carbohydrate substrates, such as corn

starch and sugar cane. Alternatively, fermentable sugars

can be obtained through the acid or enzymatic pretreat-

ment of insoluble cellulosic biomass [1�,2]. However,

most biomass sources like straw and wood contain a large

proportion of material that cannot be converted to ethanol

by microorganisms. An alternative might be to gasify

organic biomass and to use the produced synthesis gas

(or syngas) as a feed stock for the synthesis of ethanol and

other valuable compounds. Syngas, formed by the gasi-

fication or reforming of coal, natural gas or biomass, is a

key intermediate in the production of synthetic fuels [4].

As syngas can be produced from both fossil fuels and

renewable resources, it also enables a gradual transition to

more sustainable energy and chemical production. Car-

bon monoxide and molecular hydrogen are the essential

components of syngas and are used as building blocks in

processes like Fischer-Tropsch synthesis to form linear

alkanes [4]. Pure hydrogen is produced from syngas

through the water gas shift reaction (WGS) according

to the reaction: CO + H2O! CO2 + H2 [5].

The CO and H2 present in syngas are substrates for

microbial metabolism, which can be exploited for the

synthesis of various interesting products. It is expected

that syngas fermentation will play a role in the conversion

of biomass, wastes and residues that form poor substrates

for direct fermentation [1�,2,6,7]. As gasification results in

gas with a high temperature, thermophilic microbial

processes might be most applicable for the biotechnolo-

gical production of chemicals from syngas. Here we

review syngas fermentation with a focus on microbiolo-

gical aspects and indicate areas where advances can be

made.

Syngas fermentation
The production of fuels and chemicals through syngas

fermentation offers several advantages over metal catalytic

conversion. The higher specificity of the biocatalyst, lower

energy costs, greater resistance to catalyst poisoning,

and independence of a fixed H2:CO ratio are generally
www.sciencedirect.com
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mentioned [8,9]. In the past two decades, new isolates and

some known anaerobic microorganisms were shown

capable of growth with CO and H2 as substrates

(Table 1). Although most strains showed the formation

of acetate, formate and butyrate, ethanol and butanol were

also reported as products. Additionally, several purple non-

sulfur bacteria were isolated that are able to convert CO to

H2 in a process similar to the WGS reaction (Table 1).

The fermentation of syngas to ethanol by Clostridium
ljungdahlii was developed into a commercial process that

combines biomass gasification, syngas fermentation and

distillation of ethanol from the reactor effluent. Syngas is

cooled before it can be introduced into the bioreactor and

is coupled to heat recovery (BRI energy; URL: http://

www.brienergy.com/). Processes that use the biological

WGS reaction to produce hydrogen from syngas are

still at labscale. The lower temperatures of the biological
Table 1

Anaerobic carboxydotrophic microorganisms.

Species Topt (8C) pHopt

Mesophilic bacteria

Clostridium autoethanogenum 37 5.8–6.0

Clostridium ljungdahlii 37 6

Clostridium carboxidivorans 38 6.2

Oxobacter pfennigii 36–38 7.3

Peptostreptococcus productus 37 7

Acetobacterium woodii 30 6.8

Eubacterium limosum 38–39 7.0–7.2

Butyribacterium methylotrophicum 37 6

Rubrivivax gelatinosus 34 6.7–6.9

Rhodopseudomonas palustris P4 30 nr

Rhodospirillum rubrum 30 6.8

Citrobacter sp Y19 30–40 5.5–7.5

Mesophilic archaea

Methanosarcina barkeri 37 7.4

Methanosarcina acetivorans strain C2A 37 7

Thermophilic bacteria

Moorella thermoacetica 55 6.5–6.8

Moorella thermoautotrophica 58 6.1

Moorella strain AMP 60–65 6.9

Carboxydothermus hydrogenoformans 70–72 6.8–7.0

Carboxydibrachium pacificus 70 6.8–7.1

Carboxydocella sporoproducens 60 6.8

Carboxydocella thermoautotrophica 58 7

Thermincola carboxydiphila 55 8

Thermincola ferriacetica 57–60 7.0–7.2

Thermolithobacter carboxydivoransb 70 7

Thermosinus carboxydivorans 60 6.8–7.0

Desulfotomaculum kuznetsovii 60 7

Desulfotomaculum thermobenzoicum subsp.

thermosyntrophicum

55 7

Desulfotomaculum carboxydivorans 55 7

Thermophilic archaea

Methanothermobacter thermoautotrophicus 65 7.4

Thermococcus strain AM4 82 6.8

Archaeoglobus fulgidus 83 6.4

a(B Jiang, B Jiang, PhD thesis, Wageningen University, 2006); bT. carboxydiv

reported.

www.sciencedirect.com
gas-shift favour CO conversion to H2 with lower CO

concentrations, compared with WGS [5]. In experiments

with Carboxydothermus hydrogenoformans, CO thresholds

below 2 ppm could be obtained if CO2 was removed from

the gas phase of batch cultures. Without CO2 removal,

117 ppm CO remained from an original gas phase of 100%

CO, whereas chemical technology generally leaves

1000 ppm of CO (AM Henstra, PhD thesis, Wageningen

University 2006). Low CO concentrations are required for

application of the produced H2 gas in CO-sensitive low

temperature fuel cells [10].

Generally, gas/liquid mass transfer limits conversion rates

in bioprocesses that use sparingly soluble gases [9]. High

gas and liquid flow rates, large specific gas–liquid inter-

facial areas, and increased gas solubility (through the use

of increased pressure or solvents), stimulate gas/liquid

mass transfer rates. Continuous stirred tank reactors
td (h) Products Reference

nr Acetate, ethanol [34]

3.8 Acetate, ethanol [35]

6.25 Acetate, ethanol, butyrate, butanol [36]

13.9 Acetate, n-butyrate [37]

1.5 Acetate [38]

13 Acetate [39]

7 Acetate [39,40]

12–20 Acetate, ethanol, butyrate, butanol [41–43]

6.7 H2 [44,45]

23 H2 [46]

8.4 H2 [47]

8.3 H2 [48,49]

65 CH4 [50]

24 Acetate, formate, CH4 [51]

10 Acetate [17]

7 Acetate [19]

nr H2
a

2 H2 [31]

7.1 H2 [52]

1 H2 [15�]

1.1 H2 [53]

1.3 H2 [54]

nr [55]

8.3 H2 [56,57]

1.2 H2 [58]

nr Acetate, H2S [59]

nr Acetate, H2S [59]

1.7 H2, H2S [16�]

140 CH4 [60]

nr H2 [61]

nr Acetate, formate, H2S [22�]

orans was previously known as Carboxydothermus restrictus R1. nr, not
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(CSTR) offer high gas/liquid mass transfer coefficients

(KLa) at high impeller speeds, thus high power consump-

tion [8]. High impeller speeds effectively break up large

bubbles into smaller bubbles with more beneficial sur-

face/volume ratios. Small bubbles additionally have lower

rise velocities, thus longer liquid contact time. In micro-

bubble dispersion, extremely small, surfactant-stabilised

bubbles are created in a high shear zone, providing a more

energy efficient method to increase KLa values [8]. In a

study that addressed CO conversion in three types of

reactors, it was found that a biotrickling filter gave higher

efficiencies than CSTR and bubble column reactors. This

was attributed to operational conditions that approach

plug flow [9]. Furthermore, in biotrickling filters the KLa
is relatively independent of the gas flow rate for sparingly

soluble gasses [8]. Additionally, a low pressure drop is

associated with trickle-bed reactors, ensuring relatively

low power consumption. Novel bioreactor types designed

to handle gases might be of interest for syngas fermenta-

tions. Monolith biofilm reactors resemble trickle-bed

reactors in that the biomass is present as a biofilm

attached to a carrier material and gas is led along the

biofilm surface. In monoliths the pressure drop is lower

than in randomly packed beds, owing to the large open

frontal area [11]. In a membrane biofilm reactor (MBfR) a

biofilm is directly attached to a membrane through which

gases used by the biomass diffuse [12]. Hollow fibre

MBfRs have been proposed as technologically and econ-

omically feasible for the hydrogen-based removal of

oxidized contaminants from drinking water [13]. Elevated

pressures in syngas fermentations are desired; these allow

higher mass transfer rates and reduce the gas volume, thus

potentially reducing the reactor size. Pressure-tolerant

microorganisms that resist gas pressures of 40–50 Mpa

exist [14]. Under mass transfer limitations, the CO con-

centrations in the liquid phase will be close to zero [9].

However, if mass transfer is improved or in the case of

disturbances, the biomass concentration can become lim-

iting. CO concentrations will then rise to equilibrium,

possibly affecting CO-sensitive microorganisms and

resulting in an unstable process [8].

Predominantly, mesophilic organisms have been shown to

form organic compounds from syngas. So far, few attempts

have been made to isolate thermophilic microorganisms

that can produce organic compounds from syngas. Growth

by the thermophiles at high temperatures could be advan-

tageous, as less cooling of the syngas is required before it is

introduced into the bioreactor. Additionally, higher tem-

peratures can lead to higher conversion rates and benefit

separation of the product by distillation (e.g. of ethanol).

However, higher temperatures do have a negative impact

on the solubility of CO and H2.

Carboxydotrophic thermophiles
The number of Gram-positive thermophiles known to be

capable of growth on CO as substrate has increased
Current Opinion in Biotechnology 2007, 18:200–206
considerably in the past decade. For example, Carboxy-
docella sporoproducens was isolated from a thermal spring

of the volcanic Karymskoe Lake [15�], while Desulfoto-
maculum carboxydivorans was isolated from anaerobic bio-

reactor sludge of a wastewater treatment plant [16�]. Two

thermophilic microorganisms capable of growth on CO

have been known for a long time: the homoacetogens

Moorella thermoacetica (previously Clostridium thermoaceti-
cum) and Moorella thermoautotrophica (previously Clostri-
dium thermoautotrophicum), which both convert CO to

acetate. These species have optimum growth tempera-

tures of 55 8C and 58 8C, respectively, and doubling times

of 10 h and 7 h with CO [17–19]. M. thermoautotrophica
proved sensitive to CO, but this could be partially

relieved by increasing the CO2 partial pressures [19].

As neither homoacetogen was isolated using CO as a

substrate, they might not perform optimally with CO.

The recently isolated thermophiles are predominantly

carboxydotrophic hydrogenogens that grow chemo-

lithoautotrophically through the conversion of CO and

H2O to H2 and CO2. Temperature optima for growth

range from 55 8C to 80 8C and most specific growth rates

reported are between 1 and 2 h�1 (Table 1). Some are

obligate chemolithoautotrophs, while others might also

grow organotrophically or reduce various electron accep-

tors with CO or H2 as electron donor. None of the

carboxydotrophic hydrogenogenic isolates forms organic

compounds with CO (Table 1).

Whole genome sequences indicate that other microor-

ganisms may grow well with CO as substrate. The gen-

omes of Thermoanaerobacter tengcongensis and Archaeoglobus
fulgidus encode CO dehydrogenases that are known to be

important for growth with CO by carboxydotrophic anae-

robes [20,21]. The hyperthermophilic sulfate-reducing

archaeon Archaeoglobus fulgidus was recently adapted to

growth with CO. Generally A. fulgidus is cultivated at

80 8C with lactate and sulfate as growth substrates. After

adaptation by transferring cells to lactate-free serum

bottles containing a CO gasphase, A. fulgidus grew with

CO in the presence and absence of sulfate and produced

acetate and transiently formate [22�].

If conditions are chosen properly, it seems likely that it

will be possible to isolate thermophilic microorganisms

that grow well with CO and which produce organic

compounds of greater interest than acetate (e.g. ethanol

and butanol). However, thus far, few attempts have been

made in this direction.

The acetyl-CoA pathway and CO
dehydrogenase
For the production of acetate, ethanol, butyrate and

butanol, syngas-fermenting microorganisms depend on

the acetyl-CoA pathway (Figure 1). The acetyl-CoA path-

way is present in bacteria as well as Achaea, albeit with
www.sciencedirect.com
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Figure 2

Schematic representation of CO oxidation, electron transfer, H2

production and proton translocation by the membrane-bound CO

oxidizing: H2-evolving enzyme complex of carboxydotrophic

hydrogenogens, as proposed by Hedderich [28]. CODH, CO

dehydrogenase; Fd, ferredoxin; ECH, energy-conserving hydrogenase.

Figure 1

Schematic representation of the reductive acetyl-CoA pathway of

bacteria and the pathway for the formation of organic acids and

alcohols from acetyl-CoA. Oxidation of H2 to 2H+ or of CO with H2O

to CO2 and 2H+ provides reducing equivalents for the reduction of

CO2 to formate (HCOOH), of methylene-tetrahydrofolate (CH-THF) to

methenyl-tetrahydrofolate (CH2-THF), of CH2-THF to methyl-

tetrahydrofolate (CH3-THF), and of CO2 to CO. Acetyl-CoA synthase/

CO dehydrogenase catalyses the formation of acetyl-CoA from a

bound methyl group, a bound CO group and coenzyme A (CoA) (grey

box). Only reductive steps of the acetyl-CoA pathway are indicated.
slight differences. It is likely that the acetyl-CoA pathway

is restricted to anaerobes. In the non-cyclic pathway coen-

zyme A (CoA), a carbonyl and a methyl group are joined by

an acetyl-CoA synthase/carbon monoxide dehydrogenase

complex (ACS/CODH) to form acetyl-CoA [23,24]. The

bifunctional CO dehydrogenase of the complex is respon-

sible for the reduction of CO2 to form CO, which serves as

the carbonyl group. In cases where CO is readily available

the CO dehydrogenase is not necessarily needed, as

demonstrated for Carboxydothermus hydrogenoformans
[25,26]. The methyl group is obtained by the reduction

of CO2 in several successive steps with formyl, methenyl,

methylene and methyl intermediates bound to a pterin

cofactor. In bacteria, CO2 is first reduced to formate which

is then activated at the expense of ATP to form a formyl

bound to the pterin tetrahydrofolate (Figure 1). In Achaea

the CO2 is reduced to a methanofuran-bound formyl,

which is subsequently transferred to tetrahydromethanop-

terin [27]. The formation of acetyl-CoA from H2/CO2

has a negative energy balance. Acetate is formed from
www.sciencedirect.com
acetyl-CoA to recover metabolic energy that is invested

earlier in the acetyl-CoA pathway. Further reduction of

acetate yields ethanol. The production of butyrate or

butanol proceeds via acetoacetyl-CoA that is formed from

two acetyl-CoA molecules (Figure 1). Products that can be

formed from H2/CO2 are thus limited to those that allow

conservation of sufficient metabolic energy, unless an

additional energy substrate is provided.

Hydrogenogenic carboxydotrophs conserve metabolic

energy through the formation of H2. In these microorgan-

isms CO is oxidised by a monofunctional CO dehydrogen-

ase. Electrons released by the oxidation are transferred to

an energy converting hydrogenase (ECH) that reduces

protons to molecular hydrogen (Figure 2) [28,29]. In

addition, ECH couples the formation of H2 to the mem-

brane translocation of protons or sodium ions (Figure 2),

generating a chemiosmotic ion gradient that can drive ATP

synthesis through an ATP-synthase [28,30]. Energy con-

servation in carboxydotrophic hydrogenogenic microor-

ganisms is thus independent of the acetyl-CoA pathway.

However, it is expected that most thermophilic carboxy-

dotrophic hydrogenogens contain the acetyl-CoA pathway

for carbon fixation, while the currently known mesophilic

strains employ a different route (Table 1).

Metabolic engineering
In the carboxydotrophic hydrogenogenic metabolism of,

for example, C. hydrogenoformans, CO serves as the carbon

source, electron donor, and energy source. Oxidation of

CO to CO2 is indirectly coupled to ATP formation and

provides reducing equivalents for the reduction of ferre-

doxin or NAD(P)+ [28,31]. The bacterium can thus easily

balance the generation of ATP and the formation of

reducing equivalents to fit needs for optimal growth. In

sugar-fermenting bacteria, reducing equivalents and

ATP are formed in more or less fixed ratios. Metabolic
Current Opinion in Biotechnology 2007, 18:200–206
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engineering of these organisms with the aim of producing

of a specific compound can thus be accompanied by the

formation of undesired byproducts, which are formed to

satisfy the redox balance [32,33]. Additional separation

techniques are then required to obtain a purified product.

These disadvantages do not seem to apply for syngas-

fermenting microorganisms. Although H2 is produced as a

byproduct, it is easily separated from the aqueous phase

through its low solubility. Furthermore, H2 is not a waste

product, but has many uses. Another advantage of using

syngas over dissolved sugars as feedstock is that that the

use of a gaseous substrate allows the uncoupling of the

hydraulic retention time from the substrate supply. This

offers possibilities to control substrate inhibition and

product formation.

Conclusions
Syngas fermentation is an attractive technology for the

production of biofuels and chemicals. A process for etha-

nol production from syngas is already available, and pure

H2 production is possible as well. At present, suitable

thermophiles for the production of organic compounds

from syngas are not available, although their use could

offer potential advantages over the use of mesophiles.

Thermophiles that employ CO as a substrate for the

production of chemicals could be selected based on the

identification of CO dehydrogenase genes in their gen-

ome. Better still would be the isolation of new thermo-

philes that use CO or syngas as a substrate at conditions

that resemble expected bioreactor conditions.

Currently known syngas-fermenting bacteria produce H2,

formate, acetate, ethanol, butyrate and/or butanol. In

addition to short-chain organic molecules, the synthesis

of long-chain fatty acids and alcohols from syngas by

natural isolates might also be possible. The product range

of syngas fermentations might be further broadened by

metabolic engineering of hydrogenogenic carboxydo-

trophs. However, metabolic engineering remains highly

speculative at present, as no genetic tools are currently

available that allow the manipulation of thermophilic CO-

converting anaerobes.
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