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Cells and organisms are regularly exposed to a variety of stresses, and effective responses are

a matter of survival. The article describes a multi-scale experimental and dynamical modeling

analysis that clearly indicates concerted stress control in different temporal and organizational

domains, and a strong synergy between the dynamics of genes, proteins and metabolites.

Specifically, we show with in vivo NMR measurements of metabolic profiles that baker’s yeast

responds to a paradigmatic stress, heat, at three organizational levels and in two time regimes.

At the metabolic level, an almost immediate response is mounted. However, this response is a

‘‘quick fix’’ in comparison to a much more effective response that had been pre-organized in

earlier periods of heat stress and is an order of magnitude stronger. Equipped with the metabolic

profile data, our modeling efforts resulted in a crisp, quantitative separation of response actions at

the levels of metabolic control and gene regulation. They also led to predictions of necessary

changes in protein levels and clearly demonstrated that formerly observed temperature profiles

of key enzyme activities are not sufficient to explain the accumulation of trehalose as an immediate

response to sudden heat stress.

Introduction

Cells and organisms respond to environmental stresses with a

multitude of defense mechanisms that rely on action and

control throughout the hierarchy of biological organization,

from genes and proteins to signaling processes and changes in

profiles of large and small metabolites. The complexity of these

responses suggests a two-pronged systems biological approach

that combines de novo experimental and computational

modeling. Here, we present such an approach with the goal

of elucidating the coordination of complex multi-scale

responses in the baker’s yeast Saccharomyces cerevisiae to a

paradigmatic environmental stress: heat. Within minutes of the

initiation of heat stress, transcription factors are mobilized and

translocated, and numerous genes respond with strong changes

in expression.1–3 Heat shock proteins dramatically increase in

prevalence, and the profile of sphingolipids changes and in turn

affects gene expression in a controlled fashion.4,5 Finally, heat

induces the synthesis of small molecules and, in particular, the

disaccharide trehalose, which in yeast can account for up to

40% of the total cell mass under heat stress.6

The accumulation of trehalose points to its crucial role as

protector of cell components against the damaging effects of

heat. In particular, it acts as an inhibitor of protein aggregation

at elevated temperatures,7 and cells defective in the synthesis

of trehalose are highly thermo-sensitive.8 Targeted DNA-

microarray experiments have demonstrated that transcript

levels of genes associated with the trehalose pathway change

within a few minutes of temperature jumps and may last for

over one hour.1,9,10 This observation has been interpreted as an

indication that the heat response is primarily controlled at the

genomic level. However, there is a growing stream of evidence

pointing to the importance of fast changes in the levels of

metabolites, their effects on enzyme activities, and mechanisms

of cell adaptation to the suboptimal environmental changes.

These findings suggest that the heat stress response is a

systemic phenomenon that should therefore be analyzed with

methods of systems analysis. If control is indeed shared,

insights into the multi-level coordination of the heat response

will lead to a deeper understanding of a complex, paradigmatic

cellular regulation task. On the more practical side, these

insights will be useful for the generation of yeast strains that

are better capable of withstanding adverse conditions.

The heat stress response contains several aspects that are not

intuitive and will be addressed with our systemic analysis. First,

there is clear evidence that the genes coding for both trehalose

synthesis and degradation, namely trehalose 6-phosphate

synthase (TPS1), trehalose 6-phosphate phosphatase (TPS2)

and trehalase (NTH1/2 and ATH1), are strongly up-regulated

under high temperature conditions. This regulatory design is

intriguing because it seems to suggest the operation of a futile

cycle under heat stress.6 Second, the up-regulation of trehalase is

counterintuitive, since it seems to hasten the degradation of a

metabolite that is in dire need. Third, this up-regulation
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counteracts the unambiguously documented increases in the

activity of trehalose producing enzymes and the decrease in

trehalase activity under heat conditions.11 Finally, it is a

challenge to assess objectively whether the reported changes in

enzyme activities11 are by themselves sufficient for mounting an

effective response. Our analysis will answer these questions.

The main set of experiments presented here consisted of the

on-line tracing of metabolite dynamics in two groups of yeast

cells, using 13C-NMR spectroscopy in vivo.12 One group of

cells was grown at optimal temperature (T = 30 1C) and

the other adapted to growth at a supra-optimal temperature

(T = 39 1C). For each experiment, the temperature was

initially set to 30 1C (control condition) and a first pulse of

65 mM 13C-labeled glucose was given. Once glucose was

depleted, the temperature of the cell suspension was rapidly

increased to 39 1C (heat stress condition) and a second glucose

pulse was added. Subsequently the temperature was returned

to the optimal 30 1C (recovery condition). This experimental

approach allowed us to separate the direct effect of

temperature on enzyme activity from the long-term effect of

heat-induced changes in protein levels. Each experiment

resulted in metabolic time courses, which we analyzed with a

newly devised computational systems model. In both groups of

cells, the overall response patterns were similar, but the

different conditions during growth led to quantitatively very

distinct metabolic profiles.

Results

Experimental results

Metabolite dynamics in cells grown at 30 1C. As a

representative result, Fig. 1 shows the metabolic time series

of [1-13C]glucose consumption, accumulation of trehalose and

fructose 1,6-bisphosphate (FBP), and release of end-products

(ethanol, acetate and glycerol) in cells grown under optimal

conditions (30 1C). The results clearly reflect the metabolic

responses to the three pulses of [1-13C]glucose at times t = 5

(30 1C), t = 48 (39 1C), and t = 75 (30 1C).

Analysis of glucose consumption showed that heat stress

increased the glucose transport capacity up to 25 � 5% over

baseline (see ESIz). Upon return to 30 1C (recovery conditions),

the glucose transport capacity returned to 96 � 4% of the

control.

The trehalose pool increased rapidly, concomitantly with

glucose consumption. In response to the first glucose pulse,

FBP and trehalose accumulated transiently to 18� 2 and 4.8�
0.8 mM, respectively. In response to the second pulse (heat-

stress condition), trehalose accumulation was more than twice

as high (9.8 � 1.2 mM) and the rate of trehalose degradation

was significantly lower.

Under recovery conditions, trehalose accumulation was

comparable to that observed under control conditions and

exhibited a similar dynamics. We confirmed that trehalose was

located inside the cell and no evidence was found for secretion

of this sugar to the external medium. We also refuted the

hypothesis that the increase in the pool of trehalose could be

due to an increase in the size of the glucose 6-phosphate (G6P)

pool (see ESIz).
Targeted experiments with a constant glucose supply

demonstrated that trehalose accumulation begins within 2 min

of heat stress (see ESIz). This finding is intriguing because such a
fast response cannot be dependent on transcriptional or

translational regulation processes, which typically occur at a

time scale of about 15 min.11 Instead, the response is apparently

the result of a direct effect of temperature on the activity of the

enzymes that are responsible for the synthesis and degradation

of trehalose. We will return to this aspect later.

The newly formed trehalose was slowly degraded once the

glucose bolus was used-up, both at 30 1C and 39 1C (Fig. 1).

This trehalose degradation process was clearly dependent on

the ambient temperature with rates of 37 mmol h�1 g�1 dry

Fig. 1 Metabolite time courses of glucose metabolism determined by in vivo 13C-NMR in Saccharomyces cerevisiae grown under optimal

temperature. Three consecutive pulses of glucose were supplied under different temperatures: 30 1C ( ); 39 1C ( ); and back to 30 1C.

Experimental data are shown for glucose (K) ethanol ( ), glycerol ( ), acetate ( ), FBP ( ) and trehalose ( ).
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mass at 30 1C versus 20 mmol h�1 g�1 dry mass at 39 1C,

respectively. These results are consistent with the reported

inactivation of trehalase at elevated temperatures.11

To obtain deeper insight into this hydrolysis step, we

performed experiments where the exposure of cells to 39 1C

was extended and a second glucose pulse was added. To

distinguish the individual trehalose pools in the NMR spectra,

different glucose isotopomers were supplied in the first and

second pulses, i.e., [2-13C]glucose and [1-13C]glucose,

respectively (see Fig. 2). Surprisingly, the degradation profile

of trehalose derived from the first pulse was almost perfectly

linear and continued apparently unaffected by the additional

trehalose deriving from the second pulse. Furthermore, the

second pulse led to the same linear trehalose degradation

profile as the first, and the two degradation processes ran

quasi in parallel. This distinction between trehalose from

different pulses also seems to be present during recovery in the

experiments described before (see Fig. 1) where it appears that

the ‘‘new’’ trehalose from the third bolus is degraded more

quickly, whereas the degradation profile of the ‘‘old’’ trehalose

(second bolus) seems to follow the trend that began during heat

stress, irrespective of the third pulse. At present, no definite

explanation can be given for this apparent independence of

trehalose from different pulses; however, the ESIz discuss this
observation further and analyze a possible hypothesis.

Metabolite dynamics in heat adapted cells. In order to study

the long-term effects of heat treatment, we subjected the cells to

a supra-optimal temperature (39 1C) during the final 40 min

of growth prior to the in vivo NMR experiments. As before,

three glucose pulses (65 mM) were administered to these

heat-adapted cells and the metabolite responses were analyzed

by 13C-NMR as before. Trehalose accumulated to 16.7� 2 mM

under control conditions (30 1C) and to 93.1 � 5 mM under

heat-stress conditions (39 1C) (Fig. 3). These values compare to

4.8 and 9.8 mM, respectively, for cells grown under optimal

temperature (Fig. 1). This increase of almost an order of

magnitude in trehalose synthesis clearly shows the extent of

changes in gene expression induced during adaptation to heat

stress. Interestingly, the level of FBP in these cells was below the

detection limit of approximately 1 mM in our methodology.

Modeling results. The primary purposes of the modeling

effort were two-fold. First, we intended to answer the question

of whether the temperature profiles of enzyme activities as

Fig. 2 Metabolite time courses of glucose metabolism determined by in vivo 13C-NMR in Saccharomyces cerevisiae grown under optimal

temperature. Prior to time 0 the cells were supplied with unlabeled glucose at 30 1C, to keep the experimental design similar to the other experiments.

Then, the temperature was increased to 39 1C and two pulses of glucose were supplied ([2-13C]glucose and [1-13C]glucose, respectively). All

metabolites produced from [2-13C]glucose are shown in open symbols, while metabolites produced from [1-13C]glucose are shown in solid symbols.

Acetate produced from [2-13C]glucose is not shown due to its inherently low NMR visibility (under the conditions used). The metabolism of

[2,20-13C2]trehalose (derived from [2-13C]glucose) seems to be unaffected by the uptake and degradation of [1-13C]glucose and consequent

accumulation of [1,10-13C2]trehalose. It appears as if the two isotopomers of trehalose are degraded independently of each other (see ESIz for a
possible explanation). Experimental data are shown for glucose (K,J) ethanol ( , ), glycerol ( , ), acetate ( ) and trehalose ( , ).

Fig. 3 Metabolite time courses of glucose metabolism by heat-

adapted Saccharomyces cerevisiae as measured by in vivo 13C-NMR.

Cells were derived from a culture exposed to 39 1C during the last

40 min of growth. Three consecutive pulses of glucose (K) were

supplied under different temperatures: 30 1C ( ); 39 1C ( ); and

back to 30 1C. Trehalose ( ) accumulated intracellularly; the sum of

released end-products ( , ethanol, glycerol and acetate) is shown.

FBP was below the detection level.
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reported byNeves and François11 (ESIz Fig. S3) are sufficient to

explain the accumulation of trehalose as an immediate response

to sudden heat stress. Second, the model was designed to predict

heat-induced changes at the protein level from the metabolic

time series data obtained with heat-adapted cells.

As our modeling framework, we used a Generalized Mass

Action (GMA) representation, which we designed according to

the rules of Biochemical Systems Theory (BST13–16). The base

model was subsequently augmented with temperature-

dependent modifiers, as discussed in the Methods section. The

structure of the model (Fig. 4) comprises the upper part of

glycolysis and the trehalose cycle, i.e., trehalose synthesis and

degradation. The carbon flux toward the pentose phosphate

pathway (PPP) was considered as well. Experiments specifically

elucidating this branch showed that the PPP flux has a

magnitude of 5% of the glycolytic flux under both optimal

and heat stress conditions (see ESIz). A ‘‘leakage’’ flux (F14) was

included to account for carbon channeled to other routes, such

as the TCA cycle and respiration.

The direct effect of temperature on enzyme performance

was modeled using temperature coefficients (Q10) and the heat-

induced changes in protein levels were modeled with a step

function. Specifically, we included in each flux an indicator

variable t. For cells grown under optimal conditions, this

indicator was set to t = 1, while it was defined as t = 2 for

heat-adapted cells. Changes in protein amounts due to

increased gene expression were subsequently modeled as

factors tpi. We chose this format to facilitate comparisons

with changes in expression reported in the literature, which

are typically given as powers of 2.

The data from the first two pulses of glucose, supplied to

cells grown at optimal temperature (Fig. 1), were used to

parameterize the model. In this situation, all proteins were

per definition expressed at their baseline values (t = 1). The

data from the first two pulses of glucose supplied to heat-

adapted cells (Fig. 3) were used to estimate the changes in

protein content (Pi). As the results indicate, the model fits the

data rather well under all four conditions (Fig. 5).

Parameter estimates. The temperature coefficients for the

enzymes producing and degrading trehalose were obtained

from an article by Neves and François,11 who studied the

temperature dependence of the activity of trehalose

6-phosphate synthase, trehalose 6-phosphate phosphatase, and

neutral trehalase. We smoothed these data (ESIz Fig. S3) and
obtained from the smoothed curves direct estimates of the

corresponding temperature coefficients, namely, Q9 = 2.48,

Q10 = 2.35 and Q11 = 0.42.

Results of inverse estimations from the metabolic time series

data provided all BST parameters (kinetic orders and rate

constants; see Methods), as well as the remaining temperature

coefficients (Q1, Q3, Q13) and the heat induced changes in

protein levels (Pi). These parameter values are presented in

Tables 1, S1 and S2.zModel diagnostics demonstrated that the

model with these parameter values was stable and robust (see

ESIz).
A comparison of the degree of temperature dependence

inferred here with previously published data1,2,17 shows that

they are generally in good agreement (Tables 1 and S2z). This
agreement is most easily seen for published enzyme or protein

data. However, because such data are not available for all

fluxes in Table 1, we also included published expression data

(mRNA levels) as substitutes. For example, the model

predicted that heat-adapted cells have a lower amount of

glucose transporters (70% of that in control cells), which is

similar to the reduced glucose transport that was observed in

steady-state chemostat cultures grown at 30 1C or 38 1C.2 In

this reported case, the transport was reduced to about 70–80%,

depending on the temperature at which the assays were

performed. Also, most of the changes determined by Gasch

and collaborators1 for the mRNA levels of yeast cells that were

heat stressed from 25 1C to 37 1C are in reasonable agreement

with our results: Table 1 compares our results with Gasch’s

measurements at time 15 min, where the deviation of gene

expression from baseline is maximal.

The model made predictions regarding the dynamics of

glycogen that are partially in agreement with literature

information. For instance, the model predicted only a

modest increase in glycogen synthesis and a strong increase

in glycogen phosphorylase. While the latter is comparable to a

value reported earlier,17 the former is clearly different. The

Fig. 4 Schematic representation of Saccharomyces cerevisiae

glycolysis and trehalose cycle reactions used in the model. Xi and Fi

represent the dependent variables of the model and the fluxes,

respectively. Inhibitory interactions are shown in red, while

activation of glycogen synthase by glucose 6-phosphate is indicated

in green. Abbreviations: X1, extracellular glucose; X2, intracellular

glucose; X3, glucose 6-phosphate; X4, glucose 1-phosphate; X5, UDP-

glucose; X6, glycogen; X7, trehalose 6-phosphate; X8, trehalose; X9,

fructose 1,6-bisphosphate; X10, extracellularly accumulated end-

products (ethanol, acetate and glycerol); X11, glucose consumed by

other pathways (e.g., TCA); X12, glucose diverted to the pentose

phosphate pathway; F1, glucose transport; F2, glucokinase; F3 and

F4, phosphoglucomutase (forward and reverse); F5 and F6, glucose

1-phosphate uridylyltransferase (forward and reverse); F7, glycogen

synthase; F8, glycogen phosphorylase; F9, trehalose 6-phosphate

synthase; F10, trehalose 6-phosphate phosphatase; F11, trehalase; F12,

phosphoglucose isomerase and phosphofructokinase; F13, aggregated

step of all enzymatic steps between fructose 1,6-bisphosphate aldolase

and the release of end-products; F14, flux towards other pathways; F15,

flux into the pentose phosphate pathway.
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Fig. 5 Model simulation of the experimental data obtained with control cells and heat-adapted cells. Symbols show experimental data obtained

with cells grown at 30 1C (panels A, B, C), and cells subjected to 39 1C during the last 40 min of growth (panels D, E, F). Cells were supplied

with consecutive glucose pulses at 30 1C and at 39 1C. The lines show the simulated values obtained with the model. Temperatures: 30 1C ( ) and

39 1C ( ). Panels A and D: glucose (X1,E) and end-products (X10, ). Panels B and E: G6P (X3, ) and FBP (X9, ). Panels C and F:

trehalose (X8, ).

Table 1 Comparison of protein changes that were computationally inferred for heat adapted cells (grown at 39 1C for 40 min before harvesting)
with data from the literature

Flux Model step
Fold change
(2Pi)

mRNA change
(15 min)a

Weighted mRNA
changeb

Change in enzyme
activity or protein
level

1 HXT 0.7 0.8c

2 HXK 9.2 5.7 (HXK1) 8 1.4c

0.6 (HXK2)
5.3 (HXK3)

3 PGMF 20.7 0.06 16
4 PGMR 17.3 7.2
5 UGPF 16.2 16
6 UGPR 26.0
7 GSY 0.9 4.0 16 7.4d

8 GPH 61.8 6.8 50 5.5d

9 TPS1 21.5 12.9 12 4.0d

10 TPS2 14.2 17.9 18
11 NTH 4.9 11.5 6 3.0e

12 PFK+PGI 1.0 1.1c

13 ‘‘FBA’’ 1.2 0.4 1 (0.7–2.8)c,f

14 Leakage 4.1 1.8
15 ZWF 1.0 2.3 6

a From ref. 1. b Weighted values for isozyme activities and mRNA copy numbers ref. 17. c From ref. 2. d From ref. 42. e From ref. 43. ‘‘FBA’’

designates the collection of enzymatic steps between fructose 1,6-bisphosphate aldolase (FBA) and the release of end-products; f Range of values

reported for all the enzymatic activities after FBA.
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main reason is presumably that glycogen is a complicated

polymer whose dynamics is difficult to model, because the

addition or removal of monomers does not really change its

concentration, but rather its size. Furthermore, our experimental

methods did not allow us to measure glycogen directly. As a

substitute, we analyzed the effects of artificially changing the

dynamics of this metabolite and found that the system is

essentially unaffected, with the notable exception of the amount

of glycogen itself. Because our experimental methods do not

allow us to validate the model with respect to glycogen, we

cannot say to what degree glycogen accumulates under our

experimental conditions.

Beyond the effects on the trehalose associated enzymes

reported by Neves and François,11 our model predicted

direct effects of temperature on other protein activities,

namely glucose transport and FBP consumption, as well as

phosphoglucomutase. Postmus and collaborators2 discovered

a small increase (around 10%) in the transport of glucose and

a 1.3-fold increase in the activity of the fructose 1,6-

bisphosphate aldolase (FBA) (Table S2z). This latter value is

similar to our model prediction, although it is not directly

comparable, because our value does not represent the activity

of this enzyme alone, but represents the collection of all

enzymatic steps between FBP and the release of ethanol,

glycerol and acetate.

Immediate and long-term responses to elevated temperature.

Since each pulse of glucose was supplied to non-growing cells

at different temperatures (30 1C, 39 1C), it was possible to

extract from control cells the direct effect of temperature on the

system, and to characterize it in the form of temperature

coefficients. Concurrently using the data acquired with heat-

adapted cells, it was possible to calculate by howmuch the level

of each protein changed (Table 1).

As a thought experiment, we took the temperature

dependence of enzyme activities observed by Neves and

François11 at face value (outside simple smoothing) and

considered no other effects of heat. The model with these

settings demonstrated trends in the right direction, but the

results also showed clearly that these alterations in enzyme

activities are insufficient to mount the observed response

(Fig. 6). The most noticeable discrepancies are apparent in

the extent of trehalose accumulation and the kinetics of glucose

consumption at 39 1C. In response to this situation, we

explored computationally which other enzymes would have

to be temperature dependent beyond the direct effects on

Fig. 6 Direct effects of temperature on the activities of the three enzymes implicated in trehalose metabolism11 are not sufficient to

simulate the experimental metabolic responses to heat stress in control cells and heat-adapted cells adequately. Lines show simulation results.

Symbols are experimental data obtained with cells grown at 30 1C (panels A, B, C), and cells subjected to 39 1C during the last 40 min of

growth (panels D, E, F). Cell suspensions were supplied with consecutive glucose pulses at 30 1C and at 39 1C. Temperatures: 30 1C ( ) and

39 1C ( ). Panels A and D: glucose (X1,E) and end-products (X10, ). Panels B and E, G6P (X3, ) and FBP (X9, ). Panels C and F:

trehalose (X8, ).
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trehalose related enzymes. As a minimal set of additional

changes in enzyme activities, we found that temperature

dependences in glucose uptake and FBP removal, along with

a postulated change in phosphoglucomutase, permitted

accurate fits to all scenarios tested (Fig. 5). Of course, good

model fits can also be obtained with larger subsets of

temperature dependent proteins, spread throughout the

network, but it seemed worthwhile identifying a ‘‘minimal’’

model for temperature dependencies, where three strong

dependencies turned out to be sufficient to capture all

observed scenarios with sufficient accuracy.

The model was able to simulate the metabolic behavior of

cells grown under control conditions, as well as of cells

preconditioned by heat during growth, just by taking into

consideration the heat induced changes in protein levels.

These results, together with the experimental measurements,

confirm that the immediate trehalose response to heat is

regulated at the protein level, where the catalytic rates of key

enzymes change upon increases in temperature. These changes

may be explainable with the Arrhenius effect and thermal

dependence of the protein structure. This finding is

intriguing, because attention to metabolic regulation has

been dwarfed in the literature by a dominant focus on

genomic regulation.

Discussion

The heat stress response in yeast comes close to an ideal

paradigm for forays into discovering how cells coordinate

survival tasks. Comparatively speaking, yeast is rather well

understood and amenable to experimentation, its trehalose

response is massive and almost immediate, and it has been

documented that genes, proteins, lipids, and signaling pathways

are involved in the concerted efforts of the cell to regain a

tolerable internal state that permits it to weather the undesired

environmental condition. Although much is known about the

heat response, it is still full of surprises. Recognizing its systemic

nature, we launched a combined experimental and modeling

investigation, in which we generated de novo data under tightly

controlled conditions, entered these into a dynamic model, and

obtained insights not gained before.

For the new experiments, which complemented genomic and

metabolic information in the literature, we chose in vivo
13C-NMR in a flow-through mode, which allowed us to take

advantage of the inherent non-destructive and non-invasive

nature of this method. In particular, this approach permits

measurements in rather dense time sequence, which here

yielded dynamic metabolic profiles of key compounds of the

upper glycolytic and trehalose pathways. These data were

ideally suited for the construction and parameterization of a

fully dynamic model, which allowed us to tease out the various

contributions of genes, proteins and metabolites to the heat

stress response and to focus on different time scales and on

different organizational scales.

We studied four situations, namely the trehalose responses

in ‘‘naı̈ve’’ control cells under optimal and heat conditions, and

the same responses in cells that had the chance to adapt to heat

conditions toward the end of the exponential growth phase.

The option of using non-growing cells to study metabolic

responses had the advantage that the cells were relieved of

growth-related pressures. In other words, glucose metabolism

was uncoupled from growth, which simplified the system, and

the cells metabolized glucose almost exclusively toward

ethanol, glycerol and acetate, and toward trehalose and

glycogen, if needed.

For our model design, we postulated two modes of

response action, working concurrently but at different time-

scales: an immediate direct effect of temperature on the

activity of key enzymes, and a slower genomic/proteomic

adaptation to heat exposure during the preceding growth

phase. The main advantage of setting up such a two-tiered

model was that it enabled us to distinguish crisply between

these modes, while still being entirely anchored in

experimental data.

While the few previous models of the trehalose pathway had

been parameterized with in vitro data,17,26,27, our experiments

permitted a minimally biased top-down estimation that was

custom-tailored to the specific situation and permitted the

separate estimation of immediate and genome-based tempera-

ture effects on enzyme activities. In particular, we did not allow

any of the intrinsic kinetic parameters, characterizing enzyme

affinities, to be changed among the four different situations

that were experimentally tested and mathematically modeled.

Instead, the direct effect was modeled using typical Q10

temperature coefficients, while the alterations in enzyme levels

were modeled in a binary fashion that reflected the changes

induced by heat during growth. Interestingly, most regulatory

interactions, except for the inhibition of hexokinase by treha-

lose 6-phosphate, had negligible impact. To confirm the

modest degree of regulation, we analyzed numerous model

variants with stronger regulatory interactions. However, the

best fitting models always emerged with very low-magnitude

regulatory kinetic orders. It is possible that the regulatory

effects found in vitro do not play a significant role under the

experimental in vivo conditions in this work.

The combined experimental and computational analysis

yielded several interesting insights. Most importantly, the

responses to the sudden availability of glucose not only

changed under different temperature regimes, but they were

distinctly altered if the cells had been exposed to heat earlier in

their lives. Thus, if a naı̈ve control cell is suddenly exposed to

heat, it uses the best defense that is immediately available,

namely a direct temperature-dependent alteration in the

activities of key enzymes. Interestingly, the enzymes that had

been identified earlier for this purpose (trehalose 6-phosphate

synthase, trehalose 6-phosphate phosphatase, and trehalase)11

turned out to be necessary but not alone sufficient for the

required magnitude of response. In addition, glucose uptake

and FBP consumption have to be increased, and the model

furthermore suggests a slight alteration in phosphoglucomu-

tase. One might surmise that the structure of many proteins is

affected by heat, but the enzymes identified earlier, along with

glucose uptake and phosphoglucomutase, emerged as the

dominant drivers of the response.

Given the result that the cells are able to mount an effective

response solely based on temperature dependent changes in

enzyme activities, we asked what the specific contribution of

gene expression to the heat stress response might be. We
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analyzed this question with longer-term studies, which

provided a clear answer: Gene regulation appears to be a

means of preconditioning the cells for heat stress later in life.

Indeed, preconditioned cells in our experiments exhibited a

trehalose response that was an entire order of magnitude

stronger than unconditioned cells under the same heat stress.

The model allowed us specifically to predict which protein

activities had to be altered via gene regulation to mount the

observed response. It is not possible categorically to exclude

alternative profile changes in genes and/or proteins with the

same outcome, but the results predicted by the model are very

much in line with direct and indirect information reported in

the literature, including the numerical values determined for

the kinetic parameters. Specifically, the adapted cells

consumed glucose at a 30% reduced rate when examined at

30 1C, without accumulating FBP, and showed a 4-fold higher

accumulation of trehalose than control cells. More

importantly, when the temperature was raised to 39 1C, the

heat-adapted cells accumulated trehalose to a level of almost

100 mM. These dramatic changes were made possible through

increased enzyme levels within the trehalose cycle and

decreased glucose consumption. By contrast, key enzymes in

the lower section of the glycolytic pathway were essentially

unchanged, a finding that is indirectly supported by studies

in Xenopus18–21 that found no significant changes in

glyceraldehyde 3-phosphate-dehydrogenase and pyruvate

kinase. Overall, our results on genomic enzyme alterations

are also in accordance with independent results reported

earlier.10,17

Postmus et al.2 reported that steady-state yeast cultures in

carbon-limited chemostats exhibited a reduced amount of

glucose transporters, but a higher accumulation of FBP. By

contrast, our cells clearly showed reduced FBP accumulation,

a finding that was supported by our model. The difference may

be due to the unrelated experimental conditions. In our case,

the reduced amount of glucose input leads to a longer glucose

consumption period, while the flux beyond FBP is apparently

increased (Table S1z), which may explain the exhaustion

of FBP.

Our computational findings, combined with literature

information, allow us to speculate on the puzzling

observation of trehalase up-regulation under heat stress.

There is every indication that the trehalose degrading genes

NTH1/2 and ATH are up-regulated several fold upon the

initiation of heat stress and that the protein amount is

increased as well. These increases, considered in isolation,

would suggest an increased degradation of trehalose in times

of heat stress. However, from a systems view, it seems that they

are indeed compensating (or compensated by) the documented

strong temperature dependent decrease in trehalase activity.

This simultaneous up- and down-regulation has the effect that

only small amounts of trehalose are degraded during heat

stress (see Fig. 1–3), but that the cell is ready to degrade

trehalose in large amounts as soon as the environmental

temperature sinks. Without the dual, compensating

mechanism, the cell would have to begin up-regulating

trehalase genes after the return to cooler conditions, which

would delay the resuming of normality by twenty or thirty

minutes. Thus, it seems that the seemingly contradictory battle

between two counteracting processes at the gene and protein

levels in fact provides the cell with a strong selective advantage.

In summary, the response to heat is organized at two levels.

The first is an immediate metabolic response that is governed

by changes in the activities of enzymes that directly depend on

temperature. This response is apparently sufficient to satisfy

the most urgent needs of the cell. If the cells have the

opportunity to adapt to heat, response to later heat exposure

is almost ten times stronger than in naı̈ve cells. This adaptation

response is much slower and governed by alterations at the

genomic level.

Materials and methods

Experimental methods

Saccharomyces cerevisiae strain JK93da was kindly provided

by Dr Ashley Cowart, Medical University of South Carolina.

Stock cultures were prepared from shake-flask cultures: 80 ml

of YPD medium (yeast extract 10 g l�1, peptone 20 g l�1 and

dextrose 20 g l�1) in 250 ml flask, grown overnight. Flasks were

inoculated to a final OD600 of 0.05 and cells were allowed to

grow for 18 h at 30 1Cwith a stirrer speed of 200 RPM. Culture

samples were stored in sterile vials at �80 1C as 1 ml aliquots

containing 20% glycerol. Further details are presented in

the ESI.z
All in vivo NMR experiments were executed as described

generically in ref. 12 and specifically in the ESI.z
The time course experiments were replicated three to five

times. Due to the nature of these experiments, it is not feasible

to show the variability between the results as error bars in the

figures, because each in vivo NMR experiment depends on the

amount of biomass present in the suspension and must be

normalized correspondingly. The concentrations of accumu-

lated intermediates take this normalization into account, but

the temporal development is different because the rates of

consumption change slightly with biomass. The ESIz shows a
comparison of replicate time courses that are normalized by

biomass.

Modeling methods

Model design. The model was designed to analyze trehalose

synthesis and degradation in non-growing cells following

pulses of glucose at 30 1C or 39 1C. Because trehalose is

tightly connected to glycolysis, the key components of this

pathway were considered in the model (Fig. 4).

Glycolysis has been modeled for many years (e.g.,22–25), but

investigations throughout the years have either omitted the

trehalose branch or considered trehalose as a tangential

byproduct of insignificant import (e.g.,26–31). Some metabolic

modeling and simulation studies did involve trehalose

dynamics, but they either did not consider heat stress32 or

translated gene expression more or less directly into enzyme

activities and deduced metabolite dynamics from changes in

these activities.10,17,33 For our systems analysis, we developed a

mathematical model of trehalose metabolism in the format of

Generalized Mass Action (GMA) equations within the

framework of Biochemical Systems Theory (BST13–16);

details are described in the ESI.z The model contained twelve
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dependent concentration variables and fifteen fluxes and had

the format shown in eqn (1).

dX

dt
¼

�F1=Vext

ðF1 þ 2 � F11 � F2Þ=Vint

ðF2 þ F4 � F3 � F9 � F12 � F15Þ=Vint

ðF3 � F4 þ F6 � F5 þ F8Þ=Vint

ðF5 � F6 � F7 � F9Þ=Vint

ðF7 � F8Þ=Vint

ðF9 � F10Þ=Vint

ðF10 � F11Þ=Vint

ðF12 � F13 � F14Þ=Vint

2 � F13=Vext

F14=Vint

F15=Vint

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

F ¼

B � g1 � tP1 � Xh1
1 � X

hr1
3 �Q

T�30
10

1

B � g2 � tP2 � Xh2
2 � X

hr2
7

B � g3 � tP3 � Xh3
3 �Q

T�30
10

3

B � g4 � tP4 � Xh4
4

B � g5 � tP5 � Xh5
4

B � g6 � tP6 � Xh6
5

B � g7 � tP7 � Xh7
5 � X

hr3
3

B � g8 � tP8 � Xh8
6 � X

hr4
3 � X

hr5
5

B � g9 � tP9 � Xh9
3 � X

h10
5 � X

hr6
2 �Q

T�30
10

9

B � g10 � tP10 � Xh11
7 �Q

T�30
10

10

B � g11 � tP11 � Xh12
8 �Q

T�30
10

11

B � g12 � tP12 � Xh13
3

B � g13 � tP13 � Xh14
9 �Q

T�30
10

13

B � g14 � tP14 � Xh15
9

0:05 � F12

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

The vector dX/dt represents changes in metabolite levels

Xi [mM] and F is the vector of fluxes Fi [mmol min�1].

Among these, X1 (extracellular glucose) and X10 (ethanol,

acetate and glycerol) are measured in the medium, while the

other variables, beginning with X2 (intracellular glucose), are

measured inside the cells (see Fig. 4). Vext is the volume of

the cell suspension and Vint is the total intracellular volume.

B [mg of DW] is the biomass in the reactor coupled to the

NMR tube, which was directly measured at the end of each

experiment and found to change only modestly from one

experiment to the next. The g’s are rate constants and the

exponents h and hr are kinetic orders, which characterize

substrate dependence and regulatory influences, respectively.

The factors tpi represent changes in protein amounts due to

altered gene expression and the factors Q
T�30
10

i represent the

temperature dependence of the system.

Interestingly, our model analyses suggested that some of the

regulatory signals discussed elsewhere17 seemed to be very

weak or non-existent in our system. A possible reason may

be that our cells are in stationary phase, where apparently

some of the regulatory interactions are not as significant as

suggested in studies executed in vitro. To confirm our findings,

we dedicated significant effort on more complex models that

included some or all of these regulatory signals, but all fitting

routines came to the conclusion that these regulatory

interactions were insignificant for our datasets.

Parameter estimation. The parameters of the model consisted

of three classes. First, some parameters were directly measured.

The extracellular volume was Vext = 50 ml. The total

intracellular volume Vint = 7.17 ml was computed from the

total biomass, B, and the yeast cell volume, i.e., 2.38 ml per mg

dry weight.34,35 Specific experiments showed that the last flux in

vector F, describing material entering the pentose phosphate

pathway, has a magnitude of about 5% of the glycolytic flux,

F12 (see ESIz).
The second class of parameters consisted of the two types of

quantities typical for BST models, namely rate constants g and
kinetic orders h and hr. These parameters were inferred with

inverse methods from the in vivo NMR experiments, which

produced time series data for all key metabolites (glucose,

G6P, FBP, trehalose, and the end-products ethanol, acetate

and glycerol) in cells of four states: control cells and heat-

adapted cells, both at 30 1C and 39 1C. We posited that the

intrinsic rate constants and kinetic orders, which quantify

properties of enzymes, should have the same baseline values,

independent of the environmental conditions.

The parameters for glucose uptake were relatively easy to

characterize because glucose is the external substrate.

Inspection of the glucose consumption curves (Fig. 1 and 3)

suggested temperature dependence. In fact, attempts to model

all uptake trends with the same kinetic parameter failed, while

including a different kinetic constant for each temperature led

to good representations of glucose consumption (Fig. 5).

Estimation of the remaining fluxes required optimization

with the entire model. Inverse problems of this type are

notoriously difficult, and we used a variety of direct and

indirect methods to steer the optimization toward an

acceptable solution. Some of the methods were recently

reviewed in ref. 36–38. A particularly useful strategy here, as

in previous estimation tasks, was the estimation of slopes from

the experimental time series, which allowed us to convert the

optimization task on differential equations into one exclusively

using algebraic equations.39,40

To account for temperature dependent changes between

experiments, we introduced a third class of parameters,

which included temperature-induced changes in enzyme

activities, Qi, and protein abundances.
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The temperature dependence was modeled as Q
T�30
10

i . Here Qi

are the typical temperature coefficients (Q10) for enzymatic

reaction i that depend on temperature (T/1C) and represent the

change in enzymatic activity brought about by a 10 1C increase

in temperature. The temperature actually experienced by the

cells during the in vivo NMR experiment (30 1C or 39 1C) was

explicitly included in the model as the external variable T. Q9,

Q10 and Q11 are associated with the enzymes trehalose

6-phosphate synthase, trehalose 6-phosphate phosphatase

and trehalase, respectively, whose temperature profiles for

activity have been reported by Neves and François.11 We

smoothed the published trends with spline functions (ESIz
Fig. S3) for a more accurate approximation and calculated the

temperature coefficients from the ratio of the enzymatic

activities (RT) between 30 1C and 39 1C, Qi ¼ R39
R30

� �10
9
. No

independent information was available for determiningQ1,Q3,

Q13, and they were estimated from time series data as well.

Furthermore, it turned out from inspection of the time courses

that the glucose consumption dynamics changes with

temperature. In the model, we accounted for this effect with

the inclusion of a temperature-dependent kinetic order h1.

The factors tpi represent the changes in protein amounts due

to increased gene expression, as discussed before. The values of

Pi were estimated from time series together with the BST

parameters; they turned out to be comparable to information

found in the literature (see Results). The complete model with

parameter values is presented in the ESIz as a file that can be

copied directly into the freeware PLAS.41
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