Molecular Recognition and Screening Using a 15N Group Selective STD NMR Method

Katalin E. Kvr, Patrick Groves, Jess Jimnez-Barbero, and Gyula Batta

J. Am. Chem. Soc., 2007, 129 (37), 11579-11582 • DOI: 10.1021/ja073291l

Downloaded from http://pubs.acs.org on February 2, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 9 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Molecular Recognition and Screening Using a 15N Group Selective STD NMR Method

Katalin E. Kövér,*† Patrick Groves,‡ Jesús Jiménez-Barbero,§ and Gyula Battá‖

Contribution from the Department of Inorganic and Analytical Chemistry and Department of Biochemistry, Centre of Arts, Humanities and Sciences, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, and Department of Protein Science, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain

Received May 18, 2007; E-mail: kover@tigris.unideb.hu

Abstract: We present a novel saturation transfer difference (STD) experiment where group selective (GS) saturation of amide protons in 15N labeled hosts is achieved. It is demonstrated that a train of BIRD pulses that inverts only protons attached to 15N indeed results in saturation of the amide protons, while the background proton magnetization is much less affected. The undesired effect of partial saturation of the unlabeled protons can be completely cancelled out in difference spectra by switching the 15N carrier between the on- and the off-resonance frequencies. As a result, clean and artifact-free STD spectra are obtained without the need of time-consuming optimization of experimental parameters and acquiring control spectra in the absence of the host. The use of the 15N-GS STD experiment is demonstrated for the case of a glycopeptide antibiotic (dimeric eremomycin)—cell-wall analogue peptide (N–Ac–d–Ala) model system where the host and guest 1H signals overlap. The application seems feasible for ligand screening against proteins without the prerequisite of a clean on-resonance frequency or defined ligand library. The new experiment can be used as the basis for studying intermolecular interactions where the standard STD experiment is difficult to optimize.

Introduction

Molecular recognition is at the heart of key biomedical and biological events. Thus, detecting interactions between molecules is of paramount importance for drug development. From the chemical, and particularly from a NMR viewpoint, saturation transfer difference spectroscopy (STD) is the key method to identify and characterize ligand–receptor interactions.1,2 STD experiments generally start by a few seconds of semiselective irradiation of protons in the receptor whose magnetization is then transferred to ligand protons by NOE and spin-diffusion through a relay of close contacts. Comparison to a reference spectrum reveals which ligand resonances make intimate contacts with the receptor. Not surprisingly, the STD technique has found widespread applications in carbohydrate–protein recognition phenomena.3,4 The STD signals are typically in the 0–10% range when compared to reference intensities.5 As non-binding ligands provide no STD signals, STD is used as a screening technology to identify small molecules whose moieties can be incorporated into rationally designed drugs.6 The semiselective irradiation of the receptor protein is usually performed at ca. -1 or -2 ppm (or at ca. 7 ppm, provided that the potential ligands do not have aromatic protons). However, for many polypeptide systems, especially those including unfolded, partly folded, or molten globule proteins, the perturbation at -2 ppm might be very inefficiently transferred along the polypeptide chain, thus compromising the success of the experiment. Moreover, ligand peptides might also show signals in this spectral region. In addition, when STD is applied to the screening of defined combinatorial libraries with unknown NMR properties, such as heterogeneous, undefined samples (e.g., plant or cell extracts), it can produce high incidences of false positive STD signals, due to the presence of ligand signals along many different frequencies. STD screening frequently utilizes large volumes of low-concentration recombinant protein, for which cost-effective 15N labeling is often possible, and thus, the method presented herein may be of general use, even when no assignment of the 1H–15N HSQC spectrum has been performed yet. The amide region of the proteins can overlap with aromatic and amide signals from small molecules whose 1H signals should not be subjected to any irradiation. However, the ligand will contain a 0.36% natural abundance of 15N, and this could result in artifacts, particularly

1 Department of Inorganic and Analytical Chemistry, University of Debrecen.
2 University of Ulster.
3 Centro de Investigaciones Biológicas.
4 Department of Biochemistry, Centre of Arts, Humanities and Sciences, University of Debrecen.
5 Department of Inorganic and Analytical Chemistry, Centre of Arts, Humanities and Sciences, University of Debrecen.
6 Department of Biochemistry, Centre of Arts, Humanities and Sciences, University of Debrecen.
Results and Discussion

The scheme of the proposed 15N-GS STD difference experiment is depicted in Figure 1. 15N saturation of the amide protons attached to 15N is achieved by a BIRDd pulse train. The BIRDd pulse inverts the 1H$-^{15}$N magnetization, while the background proton magnetization is left unaffected. As a result, the BIRDd pulse train with a Δ interpulse delay will efficiently saturate the 1H$-^{15}$N magnetization and cause only a partial saturation of the non-labeled proton magnetization, due to pulse imperfections and incomplete relaxation. It is important to note that the effect of this partial saturation is entirely eliminated in the difference experiment, yielding a clean and artifact-free saturation transfer difference spectrum. The perfect suppression of any undesired signals is based on the following: the on- and off-resonance experiments are accomplished with exactly the same pulse sequence, as shown in Figure 1. Only the 15N carrier frequency is switched between on-resonance (center of amide 15N region) and off-resonance frequencies for the corresponding experiment. Since the proton carrier frequency remains the same throughout the measurement, the background proton magnetization is affected by the same pulse train in both the on- and the off-resonance experiment, thus resulting in its perfect elimination in the difference spectrum. The signals that appear in the difference spectrum belong to the BIRDd saturated 1H proton carrier frequency. These are affected by spin-diffusion or saturation transfer during the saturation BIRDd pulse train of a typically 2–4 s duration. The signals of the host molecule can be removed, or at least significantly reduced, by applying a T_1 relaxation filter after the 90° pulse, as indicated in the pulse scheme of Figure 1. In the case of relatively small hosts—such as dimeric eremomycin, ~3 kDa in our example—the suppression of the 1H$-^{15}$N magnetization of the host molecule can be further enhanced with the use of a heteronuclear spin–echo sequence of 1/2T_2 duration and applying 15N decoupling during acquisition to cancel out 1H$-^{15}$N antiphase proton signals. As a result, in the case of an efficient saturation transfer mechanism, the 15N-GS STD 1H difference spectrum contains the ligand STD signals, and some attenuated signals of the host molecule, which pass the filters due to inefficient relaxation.

The performance of the BIRDd saturation pulse train was tested on a simple model compound, 15N labeled Boc-protected amino acid, (L)-15N-3-Boc-L-valine. The efficiency of saturation of the 1H$-^{15}$N magnetization was ca. 89% under the experimental conditions given in the figure legend of Figure 2. Note that the non-labeled H_3 and side chain protons were also affected ca. 18–19% due to pulse imperfections. However, as mentioned previously, this undesired effect is perfectly cancelled out in the difference experiment. This fact is verified by the spectrum of Figure 2C, which was recorded under the same experimental conditions as Figure 2B except that the 15N irradiation frequency was set away. The partial saturation of the background proton magnetization was not affected by the 15N frequency switch.

Finally, a well-described model system was used to prove the utility of the \(^{15}\text{N}-\text{GS STD}\) experiment. We were able to highlight the intermolecular interactions within the \(^{15}\text{N}\) labeled (ca. 60\% abundance of \(^{15}\text{N}\)) dimeric eremomycin and N–Ac–d-Ala cell-wall analogue peptide complex (Scheme 1).\(^9\)–\(^11\) A comparison with the traditional STD experiment\(^1\) concerning the sensitivity/insensitivity upon the applied experimental conditions is also discussed. The \(^1\text{H} \text{Watergate}\) and \(^{15}\text{N}-\text{GS STD}\) spectra of the eremomycin and N–Ac–d-Ala mixture (in ca. 1:6 molar ratio) are shown in Figure 3. The GS STD spectra, Figure 3B,C, were acquired with the pulse sequence of Figure 1, without and with using a spin-lock (SL) relaxation filter pulse, respectively. The ligand signals appearing in the difference spectrum—such as NH, \(\text{H}_2\text{O}\), N–Ac, and \(\text{CH}_3\) as indicated by the dotted lines—unambiguously confirm the intermolecular interaction with the eremomycin host. In Figure 3C, the host signals are significantly attenuated with the use of a SL filter, rendering the assignment of ligand signals even more straightforward. In our case, the use of a high host concentration (\(\sim 4.1\) mM for the dimer) did not allow the perfect elimination of all host signals. Under these conditions, the additional use of an even longer SL pulse (>100 ms) would further diminish the ligand signals, compromising the aim of the experiment.

When the cell-wall analogue N–Ac–d-Ala sits in the carboxylate anion binding pocket, the nearby amide protons of eremomycin shift to a clean low-field spectral region, which allows the acquisition of control, semiselective STD experiments without affecting the ligand resonances. (Note that in our model, the ligand binding affinity is ca. 0.5–1 mM, while the host dimerizes with a submicromolar affinity. Under our experimental conditions, more than 95\% of the host is bound to the ligand.) For comparison, conventional STD experiments were undertaken separately with irradiation at two of the low-field NH frequencies: 9.1 (3-NH) and 10.6 (2-NH) ppm. The difference spectra are depicted in Figure 4B,D, respectively. The artifacts due to accidental excitation with the DANTE\(^{12}\) side-bands of the Gaussian pulse train and spillover\(^13\) are marked by asterisks. Again, a conventional selective STD spectrum of Figure 4C was recorded with a slightly different off-resonance reference. Upon comparison of the spectra in panels B–D of Figure 4, it

is apparent that the intensities and phase properties of the artifact signals were strongly affected by the position of the on- and off-resonance frequencies in every regular STD experiment but not in the experiment described herein (Figure 3).

Conclusion

The advantages of the proposed 15N-GS STD difference experiment are as follows: (1) it is potentially applicable to the study of intermolecular interactions of all types of biomolecular systems exhibiting STD effects (provided that isotope labeling is included), such as glycopeptide antibiotic–cell-wall analogue peptide complexes and others in which the ligand and protein or glycopeptide proton signals overlap, leaving no appropriate spectral region for selective saturation of the host proton resonances. We have also recently applied the sequence to a protein–peptide complex.14 (2) From a technical viewpoint, in contrast to the conventional 1H STD difference experiment, the proposed experiment does not require the recording of a control spectrum on a sample containing the ligand alone. Here, due to the 15N frequency jump between the on- and the off-resonance experiments with a constant proton carrier frequency, any undesired partial saturation is canceled out in the difference spectrum. (3) A further technical advantage of the 15N frequency switching is that careful checking and time-consuming optimization of the on- and off-resonance frequencies—to avoid partial saturation13 of ligand resonances with the DANTE12 side-bands of irradiation pulse train—becomes needless. (4) The duration of the interpulse delay between consecutive BIRD4 saturation pulse trains may be varied between 100 and 300 ms depending upon the size of the host. Note that, to minimize the partial saturation of ligand resonances due to imperfect BIRD4 pulses, longer delays are preferred to allow for relaxation recovery of ligand proton magnetization. (5) The present study with the eremomycin dimer (3 kDa) demonstrates that it is possible to observe ligand binding to small receptors by STD. Furthermore, since the global correlation time of our dimer was found to be 4 ns at 278 K, the method is probably transferable at least to small proteins. However, to increase the sensitivity, we recommend checking the saturation efficiency—this is fast and simple, just omitting the T_{ip} relaxation and 15N–1H filtering blocks as well as the difference part of the experiment—before running the complete experiments. For example, in our case, the saturation efficiency was increased from 30 to 80% when the interpulse delay was increased from 100 to 300 ms between repeated BIRD trains.

To summarize, the 15N-GS STD experiment and concept described herein is a robust experiment that can be applied to a variety of interacting molecules that also displays fewer artifacts than the standard 1H selective STD experiments and will be especially useful (and unique) for screening heterogeneous ligand libraries that exhibit overlapped 1H spectra.

Materials and Methods

Samples. 15N labeled N^β-Boc-L-valine was purchased from Cambridge Isotope Laboratories, Inc. (Andover, MA) and used without further purification. A total of 100 mg of sample was dissolved in 0.5 mL of DMSO-d_6. The sample of 15N labeled (60%) eremomycin10 and N-$\text{Ac}-D$-Ala was prepared by dissolving 6.5 and 3.3 mg, respectively, in 0.5 mL of a H_2O/D_2O (9:1) solvent mixture.

NMR Spectroscopy. All NMR experiments were performed on a Bruker Avance DRX 500 spectrometer (Bruker BioSpin, Rheinstetten, Germany) equipped with a 5 mm z-gradient multinuclear proton detected (bci) probehead. All spectra were processed with XWINNMR 2.6. The duration of the 1H 90° pulse was 12.5 μs and that of the 15N 90° pulse was 23 μs. The WALTZ-16 scheme applied for 15N decoupling was used at reduced power (i.e., the 90° pulse duration for nitrogen was 200 μs).

Acknowledgment. 15N labeled eremomycin was a generous gift from Prof. M. N. Preobrazhenskaya, Gause Institute, Moscow. Financial support from the Hungarian Scientific Research Fund (OTKA T-042567, OTKA T-048713, and OTKA NK-68578) is gratefully acknowledged. We also thank the scientific exchange program between CSIC (Spain) and Hungary for travel support.