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Outline |MpaCT FROM MOLECULES

TO CELLS

* Introduction to light microscopy

* Fluorescence microscopy

e Super resolution microscopy

e Correlative light and electron microscopy
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Robert Hooke, “the father of microscopy” (1665) IMAGING LIFE
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In 1665 Hooke published Micrographia, a book describing
observations made with microscopes and telescopes, as
well as some original work in biology.

Hooke coined the term cell for describing biological
organisms, the term being suggested by the resemblance
of plant cells to cells of a honeycomb.

Hooke's drawing of a flea

Wikipedia
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L Light Microscopy
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Molecules

Light microscopy: Electron microscopy:
Lower resolution High resolution
natural environment Vacuum

molecular specificity Contrast

Dynamics Identification

Wavelength 400-700nm Wavelength 2-4 nm
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Compound Microscope
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Light Microscopy Transmission Electron Microscopy
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Ul-Hamid, A Beginners’ Guide to Scanning Electron Microscopy
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Canon.org website
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How high can we go with the magnification?
Is there a limit?
What happen to the magnified image?

IMpPaCT

IMAGING LIFE
FROM MOLECULES
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The Diffraction Limit IMpaCT Frototecues

TO CELLS

* High magnification does not translate into the ability to see infinitely small details.
Instead, the resolution of light microscopy is limited because light is a wave and is

subject to diffraction.

* The diffraction of light prevents exact convergence of the rays, causing a
sharp point on the object to blur into a finite-sized spot in the image.

Lum f
o> B9

“True” Image ‘Eye” Image

O
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A
Ernst Karl Abbe approximated the diffraction limit of a microscope as d=———
2 n sin©




Abbe Diffraction Limit
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2(n sin©
b NA Sampl

d - resolvable feature size ampie

A - wavelength

n - index of refraction of the medium being imaged in

© - half-angle of maximum cone of light of the objective g"g;;g:ifgpe

NA - objective numerical aperture

Excitation light

In light microscopy the diffraction limit is
approximately half the wavelength ~300nm




Numerical Aperture (NA)

Objective—

Front Lens—

Specimen

NA = n sin(0)
0.95=1.0sin72.1°

NA = Numerical Aperture
n = Refractive Index
=1.00 (Air)
68 = 1/2 Angular Aperture

8 (72.1°)

Approximate Magnification: 100x

Numerical Aperture = 0.95

* IMAGING LIFE
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NA= n sin©

Higher NA

Specimen

NA = n sin(0)
0.34 =1.0 sin 20.4°

NA = Numerical Aperture
n = Refractive Index
=1.00 (Air)

6(20.4°
( ) 0 =1/2 Angular Aperture

Approximate Magnification: 20x

Numerical Aperture = 0.34

Gathering light over
larger sets of angles

\

Higher resolution

NA = n sin(0)
0.25=1.0 sin 15.0°

NA = Numerical Aperture
n = Refractive Index
=1.00 (Air)

8 (15.0°) 0 =1/2 Angular Aperture

Approximate Magnification: 10x

/

Specimen

Numerical Aperture = 0.25

https://micro.magnet.fsu.edu/primer/java/nuaperture/index.html



https://micro.magnet.fsu.edu/primer/java/nuaperture/index.html
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_\Numerical Aperture and Image Resolution j_

Resoluti
e?_?n'ilitlon Unresolved

~
Resolvid - . .

Airy Disk

I Intensity

N.A.=1.30 Focal Plane

N Ai ry Numerical Aperture
Patternsé i D

_\Numerical Aperture and Image Resolution /_

Airy Disk

I Intensity

3-Dimensional
Point Spread
Function

N.A.=0.20

Focal Plane

Three-dimensional representation of the diffraction pattern near the
intermediate image plane is known as the point spread function

Numerical Aperture

https://www.microscopyu.com/microscopy-basics/resolution



https://www.microscopyu.com/microscopy-basics/resolution
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How can we improve the resolution?
* Use shorter wavelength — electron microscopes
* Break the diffraction limit — super resolution microscopy
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- | + “Fluorescence”: named by George Gabriel Stokes (1852)
P after the mineral fluorite which lights up when illuminated
with UV.

- | * He realized that the exciting light wavelength will always
h be shorter than the emitted light wavelength.

| + The Stokes shift, which describes this light conversion, is

named in Stokes's honor.

George Gabriel Stokes (1918-1903)

Fluorite

Wikipedia
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Tonic water (quinine)

Shining light on some molecules, excitation light, results in light emission at a longer wavelength.




Stokes Shift

The energy of the emission is typically
less than that of absorption.
Fluorescence typically occurs at lower
energies or longer wavelengths.

i Stokes shift

Emission

450 500 550 600 650 700

Wavelength (nm)

" Principles of Fluorescence Spectroscopy, Joseph R. Lakowicz
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SOLUTION
OF QUININE

G.G. STOKES
YELLOW-GLASS

OF WINE
EMISSION FILTER
TRANSMITS > 400nm

BLUE -GLASS
IN CHURCH WINDOW
EXCITATION FILTER < 400nm

Experimental schematic for detection of the Stokes shift.
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Fluorescein

Excited State Levels
A\/\"ﬂ O o
MAYAVAW.
A
= Absorbed Emitted
= excitation fluorescent
= light light
Fluorescence
_ lifetime (ns) g 4
Ground State

Shining light on some molecules, excitation light,
results in light emission at a longer wavelength.
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Fluorescent organic molecules

Alexa 350 (ex) Alexa 488 (ex) Alexa 594 (ex)
443 (em) 520 (em) 620 (em)

H N 0. .0
> o
K):S Cl’lz =C=-0H
oy

2 g 3 8 3 3

] % SR B
i |
mmc;ohmms:omm masomsso(r:;mm

Structural basis of fluorophores is conjugated
double bonds acting as ‘antenna’



Absorbs blue and
ultraviolet light

Emits green light

Osamu Shimomura first isolated GFP from the jellyfish
Aequorea victoria, and discovered that it glowed bright
green under ultraviolet light.

Martin Chalfie demonstrated the value of GFP genetic tag
for biological phenomena

| \/ : Roger Y. Tsien contributed to our general understanding of
et oo P U= e oo o =0 how GFP fluoresces and extended the color palette

Montan Mont: Montan
Osamu Shimomura Martin Chalfie Roger Y. Tsien

Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

“For the discovery and development of the green
fluorescent protein, GFP.”

https://www.nobelprize.org



https://www.nobelprize.org/prizes/chemistry/2008/summary/
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- Why Fluorescence?

* High specificity

-Fluorescent proteins (GFP...)
| -Antibodies conjugated to fluorescent molecules
= * High contrast
i - Bright signal on dark background
* Quantitative
* Live cell imaging — dynamics
* Natural imaging conditions
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CCD Camera @

Epifluorescence filter set for Cy5

100
f. Exciter . ——
z or
2 Excitation L1
w . .
A : O 2 Emission
= S0} tt i
E‘ Emitter Fllter Fllter
3
s 25} -):{- O m Dichroic
: E Light Beamsplitter
400 450 500 S50 600 650 Source
WAVELENGTH (nm) Sample

Principles of Fluorescence Spectroscopy, Joseph R. Lakowicz
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m The Nobel Prize in Chemistry 2014
Eric Betzig, Stefan W. Hell, William E. Moerner

Share this: K B 1 1.1k [

The Nobel Prize 1n
Chemistry 2014

Photo: Matt Staley/HHMI © Bernd Schuller, Max- Photo: K. Lowder via

Eric Betzig Planck-Institut E#\lgn,a:.%déa Commaons, CC-
) Stefan W. Hell o

Prize share: 1/3 William E. Moerner

Prize share: 1/3 .
Prize share: 1/3

The Nobel Prize in Chemistry 2014 was awarded jointly to Eric
Betzig, Stefan W. Hell and William E. Moerner "for the development
of super-resolved fluorescence microscopy".




f Stochastic Optical Reconstruction Microscopy

B (STORM)
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26 Point Spread Function (PSF)

Single-Molecule Localization Procedure

: Pninl:-grread CCD
Function Display

Contour Map
GauF;ﬁ.iian

PSF describes the response of an imaging system to a point source.

Fitting the image using Gaussian function allows to determine the center of the spot
with about an order of magnitude higher resolution.

Zeiss website
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Airy Discs

! (a)
<> |

! ! (b) I (c)

300 nm Intensity Distributions

(b)

Separation of the molecules is done by switching them ON and OFF stochastically.

WWW.microscopyu.com, www.olympusmicro.com
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g Conventional Fluorescence

Blinking

N\

Super Resolution

?C'; ~ | Vutara 352 (Bruker)
| ﬁ“ ~ < Lateral resolution of 20 nanometers @
- ~ + Axial resolution of 50 nanometers
L % * Up to 5-micron imaging depth (with z-stack acquisition)
. #g e Simultaneous 2-color imaging in super-resolution mode
. e (up to 4 colors in wide-field mode)
R . * 3D particle tracking with ~10nm precision
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MT

Actin

Actin and microtubule filaments rearrangements throughout the infection cycle of Acanthamoeba at
different time points post infection.

The cells were infected, followed by fixation and staining of microtubules using anti-alpha-tubulin antibodies (A,B,C) or
staining of actin fibers using Phalloinin-647 (D,E,F), and DNA using DAPI (blue).

Prof. Avi Minsky and Liran Ben Yaacob
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Prof. Avi Minsky and Liran Ben Yaacob
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Cytokinetic abscission

ESCRT (Endosomal Sorting Complex Required for Transport) proteins play a role in
biogenesis of multi vesicular bodies, HIV budding and cytokinesis.

Metaphase
S Mitotic

ESCRT machinery involves in
the final scission of the bridge
connecting the two daughter

Spindle
checkpoint
surveillance

Chromosome
alignment ~ Cohesin cells

Prophase Bipolar cleavage  Chromosome

attachment segregation
If e K Spindle pole Central-spindle

formation Cytokinetic abscission
Chromosome Organelle

- condensation reassembly i -\l ( 8 o g =
Mitotic 0 ESCRT e
By DNA Cell AL o

replication cleavage

@%@“ﬁ@

o B ~200 nm
"\._ __J khlhll:mtubulns 3

Telophase

Interphase Cytokinesis

Oliver Schmidth, current Biology 2011

Dr. Natalie Elia and Inna Goliand, BGU



Spatial organization of the ESCRT-III protein (IST1) in the intercellular bridge of Qj{@ IMAGING LIFE

~ dividing cells at different stages of abscission

e i T ring spiral

"’! assembly formation

spiral
rearrangement

'M C 1F_(R)OCBI';I{\'1L(§LECULES

spiral
dissociation

Dr. Natalie Elia and Inna Goliand, BGU
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i~ = The first direct evidence that the ESCRT —llI create helical filaments!!! Dr. Natalie Elia and Inna Goliand, BGU
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Resolution
Microscopy
\></
\/ .
‘ Microscopy
Pa\

Confocal
Microscopy
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Sample on a grid Mapping the grid

Focusing on a specific FL
labelled cell

Locating the cell in the TEM

Overlay the FL and TEM images

Zoom in for high resolution and morphology Dr. Smadar Zaidman
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1. Taking advantage of both imaging techniques (FL and EM):

- Specificity of fluorescent markers to identify or pre-select cellular
targets

- High resolution and morphology of EM

2. An efficient approach to the “needle in a haystack” challenge:

targeting sparse events in a sample such as proteins, organelles and
bacteria.
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How to distinguish between sick and healthy cells? IMpaC FROM MOLECULES
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CDA45 (donor)
mitochondria (Dendra2)
Nuclei (DAPI)

Fluorescence Overlay

acceptor

o\

Donor (healthy) hematopoietic cells transfer functional mitochondria to
the irradiated host (sick) bone marrow following total body irradiation.

2 " Dr. Smadar Zaidman Golan K, et al., Blood 2020
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1. Taking advantage of both imaging techniques (FL and EM):
- Specificity of fluorescent markers to identify or pre-select cellular
targets

- High resolution and morphology of EM

2. An efficient approach to the “needle in a haystack” challenge:

targeting sparse events in a sample such as proteins, organelles and
bacteria.
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B Correlation of Fluorescence and TEM =~ IMAGINGLIFE
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_ (Tokuyasu technique)

GEP Labeling Slicing Correlative workflow

<

Sucrose embedding

70 nm Slice

<3

Cryo sectioning

<3

Light Microscopy

<3

Immuno-gold labeling

<3

TEM

.~ Dr. Smadar Zaidman Abada, A., S. Levin-Zaidman, Z. Porat, T. Dadosh, and Z. Elazar, PNAS 2017
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Autophagosome
Biogenesis

66000

. ~
Isolation Phagophore Autophagosome A‘l’ltolysosome

Lysosome
membrane

. LC3-GFP-10nm
Gold NPs

Abada, A., S. Levin-Zaidman, Z. Porat, T. Dadosh,and Z. Elazar, PNAS 2017
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) Fluorescence labeling of the sample
'J | * Genetically encoded fluorescent proteins (GFP, mCherry etc.)
*"* * Organic fluorophores (bright and photo stable).

" . | How to keep the fluorescence alive after treatment for EM?
) ;,;;5?' * Fluorescence is quenched by dehydration, fixatives, heavy metals

| and resins. Hence, Protocols should be optimized and compromised
— specific acrylic resins, no or very little osmium and UrAc...

U% Registration of images from both modalities

= | * For navigating and low resolution registration - marked substrate such
| ~ asfinder grid.

* For more precise registration - fiducial markers (FL beads, Nucleus
1 labeling etc.).

e T #
r n 7-:‘4
g %




CLEM targets intra-cellular bacteria in human
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B breast cancer IMpaCT Beele ==
23 TEM Fluorescence

Identification of bacteria
in human breast cancer
tumor cells.

Red — Bacteria (Anti-LPS)
Blue — nucleus (DAPI)

Dr. Smadar Zaidman

Nejman D. et al., Vol. 368, Issue 6494,
pp. 973-980, Science 2020
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S SEM and STORM

Correlative workflow

STORM Imaging (fixed sample) : 1
gm A

Depth (um)
1.00

A i 0.60

LAt i o 0.60

@ BB oL, | B Y 0.40

. Cvids 7 e - 0.20

Ethanol dehydration = T — 000
P v -0.20

@ g 0.40

‘s -0.60
Critical point drying e T

1 um

r P o . ’ Sy———
= = Morag E., Bayer E., mBio 2018 I £ |
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Cryo-CLEM Leica

Stability
Laser damage
Long working distance objectives (lower NA)

Cryo-CLEM Linkam
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550 W/cm?2 650 W/cm?2
30 min 5 min

Exposure to high intensity laser light can devitrify cryo samples.

Devitrification is dominated by the laser intensity, and not the illumination time.

Tuijtel, M.W., Koster, A.J., Jakobs, S. et al. Sci Rep 9, 1369 (2019).



s CryoEM and Cryo Super Resolution
cryoFL

Human bone osteosarcoma

- epithelial (U20S) cells transfected
- | with plasmid encoding rsEGFP2
fused to microtubule-associated
protein 2 (MAP2).

Overlay SR image over 18.6 nm
tomographic thick slice

$ :
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Tuijtel, M.W., Koster, A.J., Jakobs, S. et al

. Sci Rep 9, 1369 (2019).
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My colleagues at the Electron Microscopy Unit
Weizmann Institute of Science

Smadar Zaidman

Eyal Shimoni

Sharon Grayer Wolf Thank you!
Katya Rechav

Nili Dezorella

Olga Brontvein

Anna Eden Kossoy

Nadav Elad

Lothar Houben

Ifat Kaplan Ashiri

Eelena Kartvelishvily

Sergey Kapishnikov

Orna Yeger Michael Elbaum - Weizmann
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