trans-Resveratrol analysis: Comparison of methods and contents in Muscatel fortified wines from Setúbal region in Portugal

M.N. Bravo, R. Feliciano, S. Silva, A.V. Coelho, L. Vilas Boas, M.R. Bronze

PII: S0889-1575(08)00064-1
Reference: YJFCA 1684

To appear in: Journal of Food Composition and Analysis

Received date: 14 June 2007
Revised date: 7 April 2008
Accepted date: 18 April 2008

Cite this article as: M.N. Bravo, R. Feliciano, S. Silva, A.V. Coelho, L. Vilas Boas and M.R. Bronze, trans-Resveratrol analysis: Comparison of methods and contents in Muscatel fortified wines from Setúbal region in Portugal, Journal of Food Composition and Analysis, doi:10.1016/j.jfca.2008.04.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
trans-Resveratrol Analysis: Comparison of Methods and Contents in Muscatel Fortified Wines from Setúbal Region in Portugal

M.N. Bravo a,b, R. Feliciano b,c, S. Silva b,c, A.V. Coelho b,c, L. Vilas Boas b,d, M.R Bronze a,b,c,*

a Faculdade de Farmácia de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
b Instituto de Tecnologia Química e Biológica, Apartado 127, 2784-505 Oeiras, Portugal
c Instituto Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
d Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
e Universidade de Évora, Departamento de Química, 7000 Évora, Portugal

Abstract

Liquid chromatography and mass spectrometry conditions were developed in order to identify trans-resveratrol in sweet fortified Muscatel wines from Setúbal region (Portugal). Diode array, fluorescence and electrochemical detectors were used for quantitation purposes. The detection and quantitation limits for each detection mode were: 0.02 and 0.06 mgL⁻¹ for UV-Vis, 0.01 and 0.03 mgL⁻¹ for fluorescence and 0.45 and 1.35 mgL⁻¹ for electrochemical. Repeatability (n=6) expressed as the relative standard deviation of peak areas for a standard solution of trans-resveratrol (1.75 mgL⁻¹) was 0.5% for fluorescence and 1.5 % for UV-Vis and electrochemical detection modes. Samples collected at one representative producer, during winemaking process, were injected without pre-treatment and the quantitation of trans-resveratrol was carried out using fluorimetric detection. The trans-resveratrol content decreased slightly along the winemaking process and the concentrations ranged from 0.22±0.02 to 0.16±0.02 mgL⁻¹. After maturation stages, trans-resveratrol contents in wines collected at different producers were compared: values obtained range from 0.13±0.02 mgL⁻¹ to 0.38±0.03 mgL⁻¹. The trans-resveratrol contents in commercially available wines from the same producers were lower.

Keywords: Muscatel wine; trans-resveratrol; Liquid chromatography; fluorescence detector; mass spectrometry

* Corresponding author. Tel.: +351-214469770; fax: +351-214417062
E-mail address: mbronze@itqb.unl.pt (M.R. Bronze)
1. Introduction

Stilbenes belong to the non-flavonoid class of phenolic compounds and resveratrol is the major stilbene component present in white and red grapes and in grape products such as wines. Resveratrol occurs in two isomeric forms (trans and cis): the trans-resveratrol or 3,5,4’-trihydroxystilbene (Fig. 1.) is the most abundant form and is mainly located in grape skins (Monagas et al., 2005; Wang et al., 2002). This compound can also be detected as glucosides: trans and cis piceid.

trans-Resveratrol has an important role in human health as it presents antibacterial, antifungal and antioxidant properties (Kolouchová-Hanzlíkova et al., 2004) and has been reported as responsible, in part, for the lower mortality by cardiovascular diseases observed in moderate and regular wine-consuming populations (Vitrac et al., 2002; Urpi-Sardà et al., 2005; Lamuela-Raventós et al., 1995). This compound has also the capacity to protect against global cerebral ischemic injury and to protect from oxidative damage and inhibits tumour initiation, promotion and progression (Sánchez et al., 2005; Moreno-Labanda et al., 2004).

Resveratrol in grapes is synthesized almost entirely in the grape skin and its maximum concentration occurs just before the grapes reach maturity. The stilbene synthase is the enzyme used in the biosynthesis of resveratrol and the concentration in grapes varies considerably, depending on the grape variety (Threlfall et al., 1999; Gürbüz et al., 2007) and abiotic factors, such as hydric stress (Abril et al., 2005; Moreno-Labanda et al., 2004) or UV irradiation (Sun et al., 2006; Sánchez et al., 2005; Piñeiro et al., 2006). The content of trans-resveratrol in red and white grape skins (Kammerer et al., 2004) ranged from 11.1 to 123.0 mgKg$^{-1}$ of dry matter, but a large variation was observed for the same cultivars analysed in different years. The resistance of the plant against fungal diseases as downy mildew and grey mould caused by Plasmopara viticola or Botrytis...
cinerea respectively (Adrian et al., 2000; 37-41; Gerogiannaki-Christopoulou et al., 2006) has been related with the occurrence of resveratrol. Jeandet et al. (1995), refer that higher concentrations of resveratrol should be expected in wines made with grapes that suffered a Botrytis infestation.

The process used in winemaking can also induce significant changes in the content of trans-resveratrol (Castellari et al., 1998; Jeandet et al., 1995; Clare et al., 2004, Stervbo et al., 2007). Wines obtained using traditional winemaking technologies (skin fermentation with or without stems) have higher content of resveratrol than those obtained by carbonic maceration techniques (Sun et al., 2006). The extraction of resveratrol from grape skins seems to be completed before or by the end of alcoholic fermentation and a prolonged maceration after alcoholic fermentation may not affect the total content of resveratrol in finished wines. The use of bentonite treatment can be responsible for a decrease (2-5%) in the amounts of trans-resveratrol (Castellari et al., 1998) and the effect of other parameters have also been referred: a decrease in the temperature during maceration, precipitation and adsorption on marc and/or pH increasing (Stervbo et al., 2006; Gambuti et al., 2004).

In table 1 are summarized data on trans-resveratrol contents in wines.

The trans-resveratrol can be analysed directly (Abril et al., 2005; Vitrac et al., 2002) or after pre-treatment of wine samples in order to increase its content. Liquid-liquid extraction (Wang et al., 2002) and solid-phase extraction (SPE) (Rodríguez-Delgado et al., 2002; Domínguez et al., 2001; Malovaná et al., 2001; Gamoh et al., 1999) have been used in sample preparation for concentration and cleaning purposes.

In order to determine the concentration of trans-resveratrol in wine, separative methods have been reported. Gas chromatography-mass spectrometry (GC-MS), (Jeandet et al., 1995; Flamini et al., 2003) requires derivatization to enhance the
volutility of resveratrol. Liquid chromatography (LC) is the most used technique (Mattivi et al., 1995; 43; Pour Nikfardjam et al., 2006; Dourtoglou et al., 1999; Flamini et al., 2003) but capillary electrophoresis (CE) techniques have also been reported and sensitivity is similar to LC methods (Xuelin et al., 2000). Different detection modes have been used. The chromatograms obtained using UV detection are very complex due the enormous variety of compounds present in wines, making difficult the data treatment. Other detectors, more specific and sensitive, have been used recently, as mass spectrometry (MS) (Wang et al., 2002; Callemien et al., 2005), electrochemical (ED) (Zhu et al., 2000; Kolouchová-Hanzlíková et al., 2004; Bravo et al., 2006) and fluorescence (FD) (Rodríguez-Delgado et al., 2001; Vinas et al., 2000; Vitrac et al., 2002). The excitation and emission wavelengths reported in the literature and some conditions of analysis with fluorescence detection are included in table 1.

The aim of the present study was to determine the concentration of trans-resveratrol in Muscatel fortified wines from different producers from Setúbal region in Portugal. During the winemaking process the grape seeds and the skins of the white Muscatel grape vine varieties, stay in contact with wine for several months, after the addition of spirit to stop the fermentation process. As far as we know there are no reports about trans-resveratrol content in this type of portuguese wines. LC-MS was used to identify the compound in the samples analysed. The performances of other detection modes (UV, FD and ED) were compared in order to assess their possible contributions for the purpose of quantitation or simple comparison of samples. Among these detection modes fluorescence was chosen to monitor the content of trans-resveratrol present in samples collected from one producer, during vinification process. The same methodology can be used to analyse resveratrol in other types of wines provided there is attention to eventual matrix effects.
2. Materials and methods

2.1. Reagents

Acetonitrile and methanol gradient grade were from Lab-Scan (Dublin, Ireland), the acetonitrile (LC-MS) was purchased from Riedel-de-Häen (Seelze, Germany) and the orthophosphoric acid 85% *p.a.* was from Panreac (Barcelona, Spain).

Deionised water (0.050 μScm⁻¹) used in all experiments was obtained from Milli-Q system (Millipore, Molsheim, France).

The *trans*-resveratrol was obtained from Sigma (Steinheim, Germany).

2.2. Sampling

All Muscatel wines were produced during 2004 harvest at three different wineries (identified as A, B and C) located at Setúbal Denomination of Controlled Origin (D.O.C.) region. During the vinification process, spirit (77% alcohol content) was added to the must in order to stop the fermentation. The proportion of spirit added was among 25-30L for 100 Kg of must. After a macerati (M) period (4, 5 and 7 months for producers A, B and C respectively) the wines were separated from the pomace and the liquid resulting from the pressing (LP) was mixed with the wine and a maturation stage (Mt) was started. Producer A transferred the wine into wooden barrels, but the other producers kept the wine in cement tanks with an epoxy coating. After 18 months of maturation, producer B transferred the wine and blended it with wines from others tanks. The wine samples studied in this work are described in table 2. In the text, samples will be identified by the letter corresponding to the producer and a number in subscript corresponding to the month when collection was held.
Commercially available samples from producers A, B and C were purchased at a local supermarket: wines were analysed immediately after opening the bottles, using the same analytical conditions.

2.3. Sample preparation

In order to concentrate samples to be analysed by LC-MS, wine sample C₁ (10 mL) was extracted four times with 7 mL of ethyl acetate. The ethyl acetate extracts were combined and evaporated to dryness under vacuum. The residue was redissolved in 250 μL of methanol/water (6:4 v/v) (Wang et al., 2002). For the analysis by LC-DAD-FD-ED the samples were injected without pre-concentration.

The extracts and the wines were filtered through 0.45 μm membranes (Millipore).

2.4. Standards solutions preparation

A standard stock solution of trans-resveratrol (1000 mgL⁻¹) was prepared in methanol and stored in darkness at -20ºC. Different standard solutions of trans-resveratrol were prepared depending on the detection method sensitivity: 0,075-5.0 mgL⁻¹ for the UV-Vis and FD detection and 1.35-8.0 mgL⁻¹ for ED.

In order to obtain the absorption and emission spectra of trans-resveratrol, a working standard solution was prepared (1.0 mgL⁻¹) by diluting the stock solution with the solvent corresponding to the chemical composition of the mobile phase used to elute the compound during chromatographic separation: 35 % of phosphoric acid solution 0.1 % and 65 % of phosphoric acid:acetonitrile:water (1:400:599). For MS analysis a 120 mgL⁻¹ standard working solution of trans-resveratrol in methanol was prepared.

2.5. Equipments and conditions of analysis
2.5.1. Liquid chromatography with mass spectrometry

Analyses by LC were performed with a Surveyor equipment from Thermo Finnigan. The mass spectrometry system was an LCQ ion trap mass spectrometer (Thermo Finnigan, San Jose C.A., USA) equipped with an ESI (Electrospray ionisation) or APCI (Atmospheric pressure chemical ionization) sources. The LC-MS system was run by Excalibur version 1.3 software (Thermo Finnigan – Surveyor, San Jose, USA). ESI and APCI were tested as ionization sources in negative and positive polarity modes. The analytical column was a RP-18 (100 × 2.1 mm i.d., 5 µm particle size) from Thermo with a guard column of the same type. The samples were injected using a 20 µL loop; the separations were carried out with a flow rate of 250 µLmin⁻¹. The column temperature was 35º C. The mobile phase used for resveratrol identification consisted of a mixture of eluent A (formic acid 0.5%) and eluent B (acetonitrile). The analyses were performed using the following program of eluents: 0-4 min from 0 until 15% eluent B; 4-20 min, from 15 until 40% eluent B; 20-30 min, from 40 until 55% eluent B.

In the mass spectrometer experiments the following conditions were used for the APCI source in negative and positive modes: vaporizer temperature, 470º C; discharge current, 5 µA; temperature of the heated capillary 175º C. ESI ionization source in positive and negative mode was also tested in this work with the following conditions: temperature of the heated capillary 280º C, source voltage 3.70 kV. Nitrogen was used as sheath gas and auxiliary gas with a gas flow rate of 80 and 20 arbitrary units, respectively.

LC-MS was performed in the selected ion monitoring mode (SIM) for m/z 229. In the fragmentation experiments, a collision energy of 35% was used with scanning range 80-2000 amu.
2.5.2 Absorption and emission spectra of trans-resveratrol

In order to evaluate the effect of the mobile phase composition in the absorption and emission spectra of trans-resveratrol and to optimize fluorescence detection, the spectrum of a standard solution (1.0 mgL⁻¹) was determined in a mixture of eluents A and B described in section 2.4. The UV spectra of the standard working solution of trans-resveratrol (1.0 mgL⁻¹) was recorded with the spectrophotometer (DU-70, Beckman Instruments, Inc., Fullerton, USA) using a 1cm path length quartz cell. The value of absorbance measured at 306 nm (room temperature) was used to calculate the molar absorptivity.

The fluorescence emission spectra of trans-resveratrol was recorded in a spectrofluorometer (SLM Aminco), equipped with a Xenon lamp (Muller Elektronik Optic). The excitation wavelength was set at 300 and 306 nm. The excitation slits were set to provide 8-nm band passes slit and a 1 cm path length quartz cell was used. Data acquisition was performed with the software Model 8100 Spectrofluorometer version 4.20 1998 Spectronic Instruments, Inc.

2.5.3 Liquid chromatography with diode array, fluorescence and electrochemical detection

Surveyor equipment from Thermo Finnigan with a diode array, fluorescence (Thermo Finnigan FL 3000) and an electrochemical (Dionex, ED40) detectors were used.

The analytical column was a RP-18 (250×4 mm i.d, 5 µm particle size) from Merck with a guard column of the same type. The samples were injected using a 20 µL loop; the separations were carried out with a flow rate of 700 µLmin⁻¹ and column temperature of 35º C. The conditions of analysis were previously optimized and reported (Bravo et al., 2006).
All samples were analysed as duplicates. Mean values and confidence intervals are reported.

3. Results and discussion

3.1. Identification of trans-resveratrol by LC-MS

Analysis of trans–resveratrol at a flow rate of 700 µL min\(^{-1}\), in APCI and ESI positive modes SIM at m/z= 229 were compared: the detection limit (LOD) for APCI was lower (10 mg/L) than for ESI (100 mg/L). Using a flow rate of 250 µL min\(^{-1}\) (Urpí-Sardà et al., 2005, Silva et al., 2005) and the same APCI analytical conditions the LOD was improved to 1.0 mg/L. The chromatograms (SIM m/z= 229) of the Muscatel wine extract from producer C after one month maceration and a standard solution of trans-resveratrol 120 mg L\(^{-1}\) are compared in Fig. 2. For trans-resveratrol standard a peak was detected at 9.59 min (Fig. 2A.) and a peak eluting at the same retention time as the standard (Fig. 2B) was detected in the analysis of the Muscatel wine extract. For identification purpose, the mass spectra obtained by MS\(^2\) fragmentation of ion m/z 229 \([M+H]^+\) for a standard solution and a wine sample extract are compared in Fig. 3. This fragmentation originated several ions: at m/z 107.0, 118.9, 134.9, 183.0 and 211.1. These fragments are in agreement with published data (Callemien et al., 2005): fragment at m/z 211.1 corresponds to the neutral loss of 18 mass units equivalent to a molecule of water and proposed structures for ions with m/z 107.0, 118.9, 134.9 are also presented in Fig. 3.

These experiments confirmed the presence of trans-resveratrol in the wine samples.

3.2. Absorption and emission spectra of trans-resveratrol
The UV spectra of a *trans*-resveratrol (1.0 mgL$^{-1}$) in eluent solution (35% eluent A and 65% eluent B), recorded from 200 to 400 nm presents a maximum ranging from 300 to 320 nm and these values are in accordance with data published by Trela et al. (1996). The molar absorptivity for *trans*-resveratrol at 306 nm in this solvent (32000 mol$^{-1}$Lcm$^{-1}$) is similar to the values reported by the same authors (29452 mol$^{-1}$Lcm$^{-1}$ in methanol) at the same wavelength and for López et al. (2001) at 308 nm (30000 mol$^{-1}$Lcm$^{-1}$ in ethanol).

Fig. 4. shows the emission spectra of *trans*-resveratrol in eluent solution using 300 and 306 nm as excitation wavelengths. The intensity of emission with excitation at 300 nm was slightly higher and therefore was chosen as excitation wavelength. The following conditions were chosen in order to perform fluorescence detection: excitation wavelength (λ_{Ex}) at 300 nm and the emission wavelength (λ_{Em}) at 390 nm.

3.3. Analysis by LC-DAD-FD-ED of trans-resveratrol standard solutions

In order to perform quantitation of *trans*-resveratrol in samples, standard solutions were analysed and peak areas were measured using UV-Vis absorption at 306 nm, fluorescence (λ_{Ex} = 300 nm λ_{Em} = 390 nm) and electrochemical detection. Results from calibrations performed are shown in table 3. Each point of the calibration curve corresponds to the mean value obtained from two independent area measurements.

Limits of detection (LOD) and quantitation (LOQ) were determined considering the concentrations of *trans*-resveratrol that gave a signal to noise ratio (S/N) of 3/1 and 10/1, respectively. Noise was measured in the chromatogram of a blank run in the range near the retention time of the analyte using the Root Mean Square (RMS) calculation. The lowest detection and quantitation limits were achieved with a fluorescence detector. For electrochemical detector the LOD and LOQ obtained were higher (Table 3). These
limits were confirmed through the repeated injections (n=6) of the corresponding standard solutions in the concentrations indicated for the three detectors.

The repeatability of peak areas using this analytical method was tested by the repeated injections (n=6) of a standard solution (1.75 mgL$^{-1}$) of trans-resveratrol. The repeatability of peak area, expressed as relative standard deviation, for fluorescence detector is lower (0.5%) than the results obtained with UV-Vis and electrochemical detectors (1.5%).

3.4. Analysis by LC-DAD-FD-ED of Muscatel fortified wines

In previous work (Bravo et al., 2006) several phenolic compounds were already identified in this type of wine using HPLC-DAD-MS. The chromatographic profiles obtained with DAD are very complex due to the diversity of the phenolic compounds present in wine samples but there is still a good resolution among a high number of peaks.

Wine samples from the three producers collected 3 months after the beginning of the vinification process (A$_3$, B$_3$, C$_3$), during the maceration of seeds and skins in contact with wine, were analysed using the three detection modes.

The chromatogram of the wine sample (B$_3$) is shown in Fig. 5. The UV spectrum of the peak with the retention time of trans-resveratrol is compared with the spectrum of the trans-resveratrol standard. The observed differences in spectra may be explained by the co-elution of an interfering compound in the sample. Therefore quantitation of trans-resveratrol with UV is a difficult task and can lead to incorrect results.

Chromatographic profiles obtained with electrochemical detection present a lower number of detected peaks since this technique is more selective (Fig. 6.). This detection mode was useful for the detection of phenolic compounds electrochemically active, but
trans-resveratrol content in the samples of Muscatel wines analysed were lower than LOD determined for electrochemical detection. In order to use this detector for quantitation, it would be necessary to prepare concentrated extracts.

The fluorimetric detection allowed analysis without sample pre-treatment, even in wines with low trans-resveratrol content. The chromatographic profiles obtained for wine B3 and a standard solution are compared in Fig. 7. The identification of trans-resveratrol was confirmed by analysis of samples spiked with a standard.

3.5. trans-Resveratrol content of Muscatel wines

The content in trans-resveratrol was compared in wines obtained from different producers at different vinification stages as well as commercial samples from the same producers and results were estimated from chromatograms obtained with fluorescence detection.

Analysis of samples collected along 20 months of the winemaking at producer B are discussed as an example of the evolution of trans-resveratrol content. During the maceration process (4 months) the concentration of trans-resveratrol had no significant changes (mean value 0.22 mgL\(^{-1}\)). The results obtained are in accordance with published data which suggest that prolonged maceration after alcoholic fermentation does not increase the resveratrol content (Sun et al., 2006). After the maceration stage, the wine was separated from the pomace, transferred into a cement tank with an epoxy coating. and the liquid resulting from the pressing of the pomace was added to the wine. There is no significant difference in trans-resveratrol content between this sample and the ones previously analysed. The wine was then blended with other wines from the same vinification: the content of trans-resveratrol was higher (0.24 mgL\(^{-1}\)) probably due to phenolic composition differences in the blended wines. During the maturation process
there was a decrease in the *trans*-resveratrol content (0.14±0.02 mg L⁻¹ after 18 months). As SO₂ or other antioxidant was not added to wine, *trans*-resveratrol content could decrease due to an oxidation process.

The contents of *trans*-resveratrol in wines at different vinification stages are presented in table 4. For wines collected at equal periods of maceration or maturation, the results show that the concentration of *trans*-resveratrol of wine from the producer A is lower than the concentrations found in wines from other producers. Lower temperatures during maceration can be responsible for lower concentrations in wines from producer A, as the maceration process occurred in inox tanks protected at the top by a metallic roof, while the other producers used cement tanks located inside buildings. The pH value (4.42) found for sample A is higher than the values obtained for samples B and C (3.65 and 3.60 respectively) and this higher value of pH and lower content of *trans*-resveratrol may be related.

Each producer has brand name wines made by careful blending of wines produced with grapes of the company vineyards. The *trans*-resveratrol contents of wines commercially available from producers B and C (0.16±0.01 and 0.15±0.02 respectively) were similar and for producer A it was lower than LOD.

Comparison of results obtained with those presented in table 1 show that values obtained for Muscatel wines are higher than the concentrations reported for white table wines using fluorescence detection but lower than contents of fortified wines quantified using UV detection. The maceration with grape skins used in Muscatel wine production may contribute to a higher content of *trans*-resveratrol in wines. The use of a UV detector may explain higher values for the contents of this compound if there are co-eluting peaks in the analysis by HPLC.

4. Conclusions
HPLC with fluorescence detection is more adequate than DAD for the analysis of trans-resveratrol in wine samples because some compounds may co-elute at the same retention time of trans-resveratrol. An electrochemical detector could also be used but the concentrations of this compound in the samples of Muscatel wines analysed were lower than LOD.

The use of fluorescence detection ($\lambda_{ex} = 300$ nm, $\lambda_{em} = 390$ nm) was suitable to quantify low concentrations of trans-resveratrol in Muscatel wines, allowing the quantitation of the compound by direct injection of wine samples with LOD = 0.010 mgL$^{-1}$ and LOQ=0.030 mgL$^{-1}$.

The concentration of trans-resveratrol decreased during the winemaking process of the Muscatel wine. Although grapes are grown in the same geographic region and processing conditions are similar, a higher concentration of trans-resveratrol was observed for one of the produced wines. The results obtained in commercial wines analyses from the same producers, confirmed the results observed for samples collected at production stages.

Acknowledgements

The authors thank to: José Maria da Fonseca Vinhos SA, Adega Cooperativa de Palmela and Casa Agrícola Horácio Simões for providing samples of Muscatel wines, and also to Rute Marques and Helena Lameiro (Instituto de Tecnologia Química e Biológica, Micro-heterogeneous Systems Group) for their help to operate with the spectrofluorometer equipment.
References

Fig. 1. Structure of the trans-resveratrol

Fig. 2. SIM \(m/z = 229 \) for a (A) standard solution of trans-resveratrol (120 mgL\(^{-1}\)); (B) extract of Muscatel wine from Setúbal region (C\(_1\)), when analysis was performed at positive mode using APCI source.

Fig. 3. MS\(^2\) of ion \(m/z = 229 \) and the proposed fragments: (A) standard solution of trans-resveratrol (120 mgL\(^{-1}\)); (B) extract of Muscatel wine from Setúbal region (C\(_1\)).

Fig. 4. Emission spectra of a solution of trans-resveratrol (1.0 mgL\(^{-1}\)) in eluent solution: (A) excitation at 300 nm (B) excitation at 306 nm.

Fig. 5. Chromatograms at 300 nm and UV spectra of (A) trans-resveratrol solution (0.45 mgL\(^{-1}\)); (B) Muscatel wine from Setúbal region (B\(_3\)). **Identification:** 1. gallic acid; 2. 5-HMF; 3. protocatechuic acid; 4. furfural; 5. caftaric acid; 6. catechin; 7. caffeic acid; 8. ferulic acid; 9. procyanidin dimer; 10. epicatechin; 11. ethyl gallate; 12. ferulic acid; 13. trans-piceid; 14. quercetin-3-glucuronide; 15. quercetin-3-glucoside; 16. cis-piceid; kaempferol-3-glucoside; quercetin-3-rutinoside; 17. trans-resveratrol; 18. cis-resveratrol, ethyl caffeate; 19. quercetin.

Fig. 6. Chromatograms using electrochemical detection of Muscatel wines from Setúbal region (producers A\(_3\), B\(_3\) and C\(_3\)) and standard solution (3.75 mgL\(^{-1}\)). **Identification:** 1. gallic acid; 3. protocatechuic acid; 5. caftaric acid; 6. catechin; 7. caffeic acid; 14. quercetin-3-glucuronide; 15. quercetin-3-glucoside; 17. trans-resveratrol; 19. cis-resveratrol, ethyl caffeate.

Fig. 7. Chromatograms using fluorescence detection (300/390 nm) of Muscatel wine from producer B\(_3\) and standard solution (0.60 mgL\(^{-1}\)). **Identification:** 1. gallic acid; 5. caftaric acid; 6. catechin; 7. caffeic acid; 13. trans-piceid; 14. quercetin-3-glucuronide; 15. quercetin-3-glucoside; 16. quercetin-3-rutinoside; 17. trans-resveratrol; 19. cis-resveratrol.
Table 1 Contents of *trans*-resveratrol (mgL\(^{-1}\)) in different wines analysed by HPLC and corresponding detection (LOD) and quantitation (LOQ) limits reported in the literature.

Table 2 Samples of Muscatel wines from Setúbal region collected during the vinification process.

Table 3 Parameters for the quantitation of *trans*-resveratrol.

Table 4 Concentrations of *trans*-resveratrol in Muscatel wines from Setúbal region (mean value±confidence interval, mgL\(^{-1}\)).
Table 1.

<table>
<thead>
<tr>
<th>Wine origin</th>
<th>Wine content (mgL⁻¹)</th>
<th>Detection mode</th>
<th>$\lambda_{	ext{abs}}$ (nm)</th>
<th>$\lambda_{	ext{exo}}$ - $\lambda_{	ext{Emi}}$ (nm)</th>
<th>LOD (mgL⁻¹)</th>
<th>LOQ (mgL⁻¹)</th>
<th>Eluents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portugal mainland (Baptista et al, 2001)</td>
<td>Red: 1.56a, White: 3.36a, Rosé: 0.010</td>
<td>diode array</td>
<td>306</td>
<td>0.010</td>
<td>----</td>
<td>----</td>
<td>0.4% (v/v) o-phosphoric acid (pH 2.3) / 80% (v/v) acetonitrile and 20% eluent A</td>
</tr>
<tr>
<td>Azores Island (Baptista et al, 2001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece (Gerogiannaki-Christopoulou et al, 2004)</td>
<td>Red: 0.015b, White: 0.009c</td>
<td>diode array</td>
<td>308</td>
<td>0.015</td>
<td></td>
<td></td>
<td>water: methanol (5:5) / water: acetonitrile (7:3)</td>
</tr>
<tr>
<td>Spain (Abril et al., 2005)</td>
<td>Red: 0.32 – 4.44, White: 0.12-2.80</td>
<td>diode array</td>
<td>306</td>
<td>0.12</td>
<td></td>
<td></td>
<td>glacial acetic in water (pH 2.4) / acetonitrile (20:80)</td>
</tr>
<tr>
<td>Azores Island (Ribeiro de Lima et al,1999)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>glacial acetic in water (pH 2.4) / acetonitrile (20:80)</td>
</tr>
<tr>
<td>Spain (Vitrac et al, 2002)</td>
<td>Red: 2.35, White: 2.36</td>
<td>diode UV-vis</td>
<td>300</td>
<td>0.06</td>
<td>0.22</td>
<td></td>
<td>acetonitrile / 5% aqueous acetic acid (9:91)</td>
</tr>
<tr>
<td>French (Vitrac et al, 2002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₂O (99%) / trifluoro acetic acid (1%) / acetonitrile (80%) / eluent A (20%)</td>
</tr>
<tr>
<td>Spain (Rodriguez-Delgado et al, 2002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>methanol (10%) / acetic acid (2%) / water (88%) / methanol (90%) / acetic acid (2%) / water (8%)</td>
</tr>
<tr>
<td>Turkey (Gribi et al, 2007)</td>
<td>Red: 0.176 – 4.403, White: 0.116-1.931</td>
<td>fluorescence</td>
<td>360/370</td>
<td>0.01</td>
<td></td>
<td></td>
<td>acetonitrile (9%) / 5% aqueous acetic acid (91%) / acetonitrile (25%) / 5% aqueous acetic acid (75%) / acetonitrile (70%) / 5% aqueous acetic acid (30%)</td>
</tr>
<tr>
<td>Czech republic (Kolouchova-Hanzlikova et al, 2004)</td>
<td>Red: 0.7-11</td>
<td>electrochemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>acetonitrile (25%) / 0.1% H₂PO₄ and NaCl (5mmolL⁻¹)</td>
</tr>
</tbody>
</table>

a Mean value
b Muscat of Alexandria
c Muscat of Samos
d ng calculated according to IUPAC rules (25 µL)
Table 2.

<table>
<thead>
<tr>
<th>Producer</th>
<th>Maceration (M) (time in months)</th>
<th>Maturation (Mt) (time in months)</th>
<th>Ageing in wood (time in months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>B</td>
<td>0, 2, 3 and 4</td>
<td>5, 6, 7, 8 and 10, 18 and 20</td>
<td>--------</td>
</tr>
<tr>
<td>C</td>
<td>1 and 3</td>
<td>10 and 20</td>
<td>--------</td>
</tr>
</tbody>
</table>

Table 3.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Range (mgL⁻¹)</th>
<th>Equation</th>
<th>r²</th>
<th>LOD a (mgL⁻¹)</th>
<th>LOQ b (mgL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uv-vis (306 nm)</td>
<td>0.075 – 5.0</td>
<td>y=744531x – 92367</td>
<td>0.9920</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>0.075 – 5.0</td>
<td>y=329.77x – 36.149</td>
<td>0.9953</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Electrochemical</td>
<td>1.35 – 8.0</td>
<td>y=3.9928x – 0.6105</td>
<td>0.9973</td>
<td>0.45</td>
<td>1.35</td>
</tr>
</tbody>
</table>

a; LOD, limit of detection (S/N=3); b, LOQ, limit of quantitation (S/N=10);

Table 4.

<table>
<thead>
<tr>
<th>Vinification</th>
<th>Producer</th>
<th>Maceration</th>
<th>Maturation</th>
<th>Ageing in wood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>0.15 ± 0.014 (A₃)</td>
<td>0.13 ± 0.02 (A₁₀)</td>
<td>0.13 ± 0.01 (A₁₈)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.22 ± 0.023 (B₃)</td>
<td>0.21 ± 0.01 (B₁₀)</td>
<td>0.16 ± 0.01 (B₂₀)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.35 ± 0.014 (C₃)</td>
<td>0.38 ± 0.03 (C₁₀)</td>
<td>0.28 ± 0.03 (C₂₀)</td>
</tr>
</tbody>
</table>
Fig. 1
Fig. 2
Fig. 3
Fig. 4

![Graph showing spectral data with peaks at different wavelengths]
Fig. 5
Fig. 6
Fig. 7