This work explores the possibility to prepare, using supercritical fluid technology, particulate hybrid delivery systems that allow improved bioavailability and controlled release of antioxidant bioactive compounds.

CO₂ is fed to a high pressure stirred vessel containing the carriers and the antioxidant compound, quercetin. The operating conditions are adjusted according to previous studies in order to have a melted product under CO₂ atmosphere. After a certain stirring equilibration time, the mixture is depressurized through a nozzle and the particulate solids collected.

Results & Discussion

SCF Technology

- **Clean Method**: Alternative to conventional processes, carried out under conditions that have detrimental effects on the active principle and/or carriers materials.
- **Drug Stability and Bioavailability Enhancement**: Formulation of particulate drug delivery systems, such as microparticles and nanoparticles, liposomes and inclusion compounds which can enhance the drug stability and bioavailability and modulate the drug release profile.

Particles from Gas-Saturated Solutions (PGSS)\(^5\)

A high pressure stirred vessel, filled with quercetin, TIC-temperature control.

Systems Prepared

<table>
<thead>
<tr>
<th>Quercetin</th>
<th>Carrier</th>
<th>Mass Proportion</th>
<th>S/L Ratio</th>
<th>Contact Time (h)</th>
<th>Temp (°C)</th>
<th>Drug Load (%)</th>
<th>Entrapment Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUER:GMS</td>
<td>GMS</td>
<td>1:10</td>
<td>1:0</td>
<td>2</td>
<td>70</td>
<td>0.38</td>
<td>93.5 ± 0.3</td>
</tr>
<tr>
<td>QUER:HP-a-CO2:GMS</td>
<td>1.10:1.10</td>
<td>2</td>
<td>70</td>
<td>0.38</td>
<td>93.5 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUER:GMS-a:GMS</td>
<td>1:1:4</td>
<td>2</td>
<td>70</td>
<td>0.38</td>
<td>93.5 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUER:HP-a:CO2:GMS-a:GMS</td>
<td>9:0:1.1:0.1</td>
<td>2</td>
<td>70</td>
<td>0.38</td>
<td>93.5 ± 0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dissolution Study

- Performance evaluation of the Quercetin hybrid systems prepared using the PGSS technique in Simulated Intestinal Fluid (SIF) (pH 6.8) at 37°C.

Antioxidant Activity

The Oxygen Radical Absorbance Capacity (ORAC) assay was used to evaluate the antioxidant capacity of the samples obtained in the dissolution studies towards peroxyl radicals \(\text{ROO}^-\).

Acknowledgements

The authors acknowledge the financial support received from Fundação para a Ciência e Tecnologia (FCT) through PTDC/AGR-AAM/699645/2008 project.

References