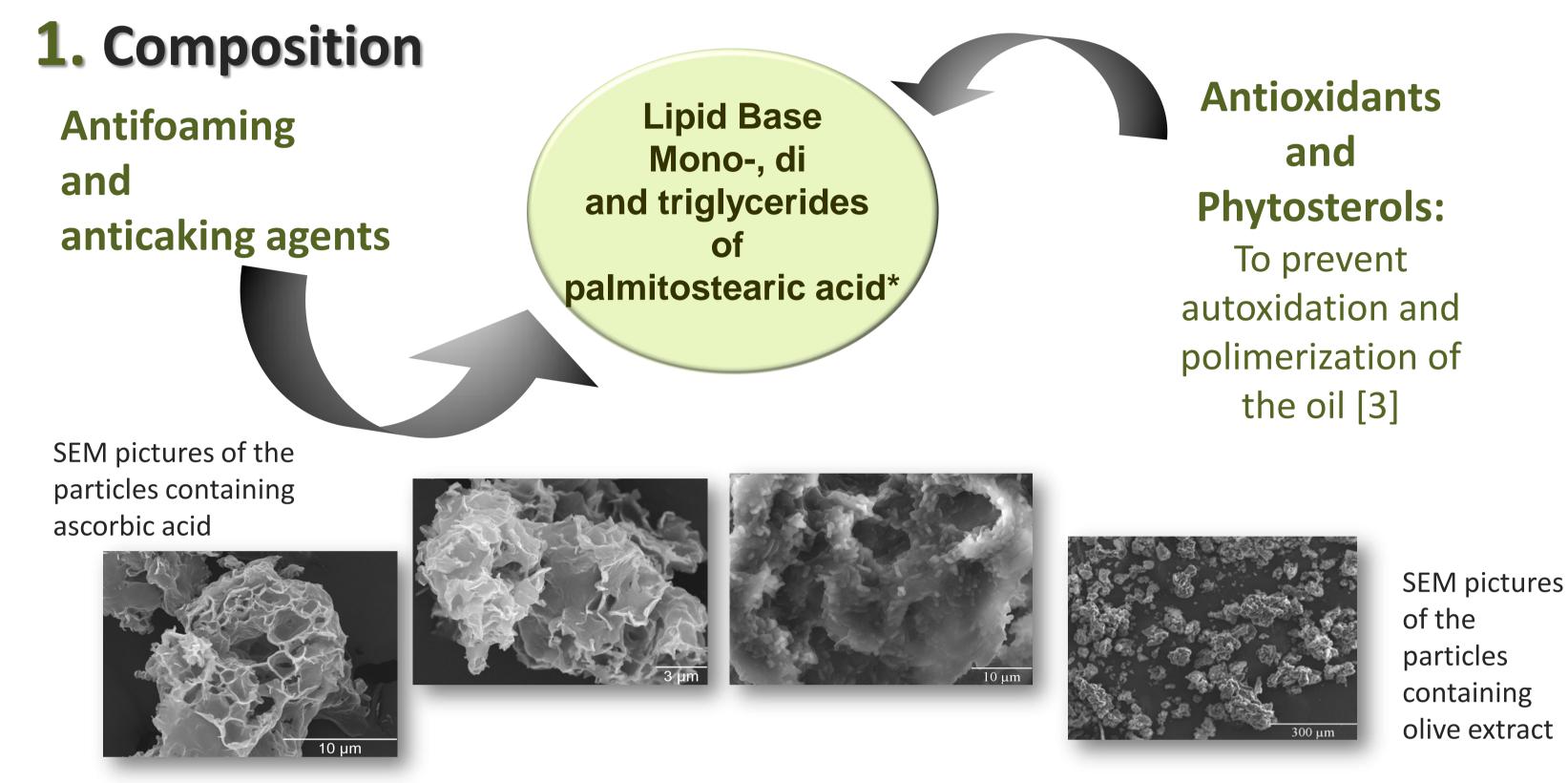
Formulation of solid lipid microparticles as delivery systems of bioactive ingredients for functional foods development

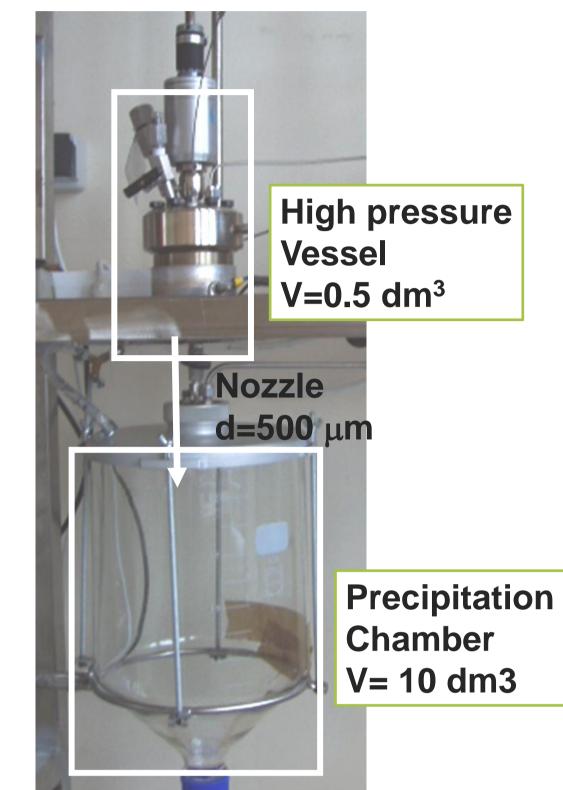
Instituto de Tecnologia Química e Biológica | Av. da República, 2781-901 Oeiras, Portugal www.itqb.unl.pt

Ana A. Matias ^{a,c}, A. R. Sampaio de Sousa, <u>Catarina M.M. Duarte ^{a,b,*}</u>

^a IBET, Apartado 12, 2781-901 Oeiras, Portugal; ^b ITQB - UNL; ^c iMed.UL/CPM, Faculdade de Farmácia, Universidade de Lisboa, Portugal *<u>cduarte@itqb.unl.pt</u>



Encapsulation of hydrophilic bioactive compounds in lipid microparticles


Microparticles

* Formulation optimization studied in a Previous work

Incorporation Tests

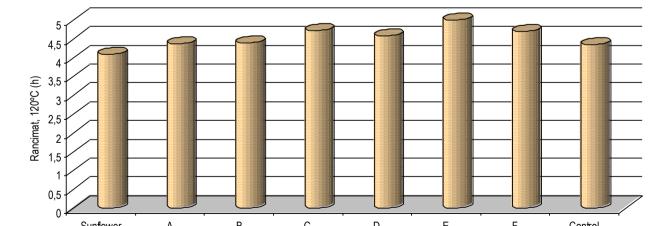
Supercritical fluids Technology Method: PGSS® Particles from Gas Saturated Solutions [1]

Dense carbon dioxide is solubilised in large quantities in the molten lipids. The gassaturated solution is obtained, which is then further expanded through a nozzle generating solid particles. [2]

In order to evaluate the viability of the particles to fulfill the goals of this study, tests were performed to incorporate the particles in sunflower oil.

When compared with the incorporation of the bioactive compounds alone, the microparticles showed:

- O Homogeneous incorporation
 - Less stirring needed
- **O** More stability
- Less emulsifier needed
- No changes in the oil's characteristics



Results & Discussion

1. Oxidative Stability

To evaluate the antioxidative effect of bioactive microparticles at low temperatures (T \leq 140°C)

The induction time were determined by Rancimat test Methrom Rancimat model 679

Microparticles	Composition	
A	Ascorbic Acid (17%)	
В	Ascorbic Acid (17%) + Natural Tocopherols (2%)	
С	Ascorbic Acid (17%) + Phytosterols (5%)	
D	Ascorbic Acid (33%)	
E	Ascorbic Acid (17%) + Phytosterols (5%) + Anticaking Agent (6%)	
F	Olivemed, Natural Extract rich in olive polyphenols (15%)	
Control	Only mono-, di and triglycerides of palmitostearic acid	

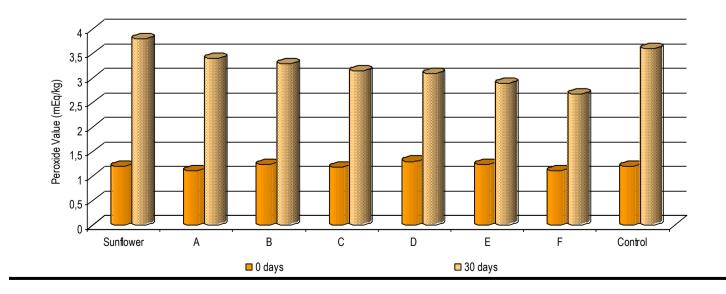
Natural Extract present higher oxidative stability than with

other biocompounds

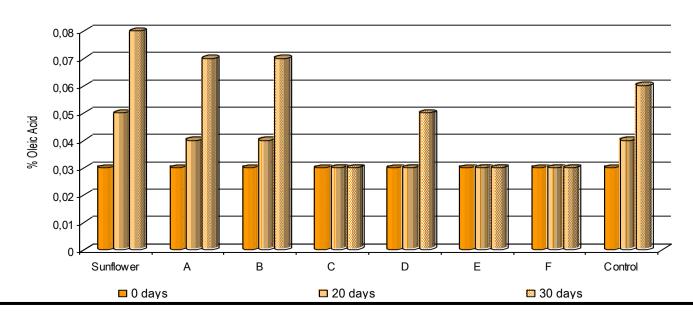
2. Frying Simulation Test

To evaluate the microparticles efficacy at frying temperatures $(T \ge 170^{\circ}C)$

	Oils	"Frying" Performance	%TPM	%FFA
	A	foaming in 1 st minute, few splashes	13-16%	0,11
er	В	foaming in 1 st minute, few splashes	13-16%	0,10
	С	slight foaming effect in 1 st minute, no splashes	6-12%	0,07
acid	D	foaming in 1 st minute, no splashes	13-16%	0,10
n duce	E	slight foaming effect in 1 st minute, no splashes	6-12%	0,06
	F	foaming in 1 st minute, no splashes	6-12%	0,06
+	C + E900	slight foaming effect in 1 st minute, no splashes	13-16%	0,08
ut	F + E900	no foaming, no splashes	6-12%	0,07
	Sunflower	foaming in 2 st minute, few splashes	13-16%	0,14
' P				



Adapted from the Gertz and Kochhar Method [3]


The TPM per cent were determined by colorimetric test - Oleotest[®]

• The Total Polar Materials amount seems to be controlled by the presence of the phytosterols at

The peroxide value were carried out by the iodometric assay [4]

The Free Fatty Acids were determined by titration IUPAC standard methods (2.201, 1987)

O Phytosterols and ascorbic acid	
tend to increase the induction	
time in rancimat test and reduce	
the peroxides and FFA	
 The addition of lipid microparticles with or without bioactive compounds 	C F
O Enhance the oxidative	S
resistance at low temperature	

frying temperature

• The increase of FFA is very slightly but the sunflower oil with phytosterols has a lower value

The presence of natural olive polyphenols
 controlled the oxidative stability of the oil and
 showed better stability at frying conditions

3. Dimethylpolysiloxane Effect

The addition of 10 ppm of dimethylpolysiloxane
 (E900) to microparticles C stabilized the foam effect
 and controlled the performance of the oil
 The anticaking agent is responsible for the splash

control

 Microparticles C show a negative synergetic effect with E900

<u>References</u>

[1] Weidner, E., Knez, Z., Novak, Z., WO Patent 21688, 1995
[2] Fages, J., Lochard, H., Letourneau, J-J., Sauceau, M., Rodier, R., Powder Technology, 141, 3, 219-226, (2004)
[3] Gertz, C. Klostermann, S., Kochhar, S.P, Eur.J.Lipid Sci. Technol, 102, 543-551, (2000)
[4] European Standard EN ISO 3960

Acknowledgments

A. Matias and A.R.Sampaio de Sousa are grateful for financial support from SFRH/BDE/15535/2005 and SFRH/BD/14403/2003 from FCT- Portugal grants. The authors would also like to thank the financial support from FCT (Portugal) through PTDC/AGR-AAM/099645/2008 project..