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The [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough is
a bacterial lipoprotein lacking a typical lipoprotein signal peptide
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Abstract Desulfovibrio vulgaris Hildenborough has a mem-
brane-bound [NiFeSe] hydrogenase whose mode of membrane
association was unknown since it is constituted by two hydro-
philic subunits. This work shows that this hydrogenase is a bac-
terial lipoprotein bound to the membrane by lipidic groups found
at the N-terminus of the large subunit, which is unusual since it is
missing the typical lipoprotein signal peptide. Nevertheless, the
large subunit has a conserved four residue lipobox and its synthe-
sis is sensitive to the signal peptidase II inhibitor globomycin.
The D. vulgaris [NiFeSe] hydrogenase is the first example of a
bacterial lipoprotein translocated through the Tat pathway.
� 2007 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

The [NiFeSe] hydrogenase (HysAB) of Desulfovibrio vulgaris

Hildenborough is very interesting from a biotechnological

point of view since it has a high activity and is resistant to oxy-

gen inactivation [1]. This hydrogenase (Hase) is preferentially

synthesized by D. vulgaris when selenium is available [2]. It is

strongly associated with the membrane, despite the fact that

its two subunits are hydrophilic and it lacks a membrane cyto-

chrome b subunit, present in most periplasmic uptake Hases

[3]. The membrane-associated [NiFeSe] Hase ([NiFeSe]m) pre-

cipitates in the absence of detergent and its activity is maximal

in the presence of phospholipids. A soluble form of the [Ni-

FeSe] Hase ([NiFeSe]s) can be detected in cell extracts, and is

also produced by degradation of the native [NiFeSe]m enzyme.

The [NiFeSe]s form has a much reduced activity that is not

affected by detergent or phospholipids. Its large subunit is

missing the first 11 residues, whereas the [NiFeSe]m Hase HysA

has a blocked N-terminus and a higher molecular mass than

predicted from the sequence. To explain these observations it

was proposed that a lipidic group present at the N-terminus

of the [NiFeSe]m HysA subunit is responsible for its membrane

attachment [1]. The most obvious explanation would be that
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the [NiFeSe]m Hase is a bacterial lipoprotein where an N-ter-

minal Cys residue is post-translationally modified (N-acyl-S-

diacylglyceryl-Cys) [4–7]. However, the sequence of HysA does

not include the characteristic signal peptide used to identify

bacterial lipoproteins. This signal peptide, which is cleaved

by signal peptidase II (Lsp), is quite similar to those of other

secreted proteins that are cleaved by signal peptidase I [8]. It

includes also a positively charged n-region and a hydrophobic

h-region, and its most distinguishable characteristic is a c-re-

gion consisting of four residues with the consensus [LVI][AST-

VI][GAS]C, also named a lipobox, where the cleavage site

occurs before the strictly conserved Cys that is the lipid mod-

ified residue [4,5]. The post-translational lipid modification in-

volves three enzymes that act sequentially: the prolipoprotein

diacylglyceryl transferase (Lgt) transfers a diacylglyceride to

the cysteine sulfydryl group; the signal peptidase II (Lsp)

cleaves the signal peptide at the residue before the cysteine

forming an apolipoprotein; the apolipoprotein N-acyltransfer-

ase (Lnt) acylates the a-amino group of the apolipoprotein

N-terminal cysteine forming the mature lipoprotein [5,7]. All

lipoproteins described to date are translocated across the

cytoplasmic membrane by the Sec pathway that transports un-

folded proteins [9]. In this work, we describe experiments that

confirm that the D. vulgaris [NiFeSe] Hase is a bacterial lipo-

protein, which is translocated by the Tat pathway.
2. Materials and methods

2.1. Cell growth and preparation of the crude extracts
D. vulgaris Hildenborough (DSM 644) was grown in pyruvate-sul-

fate medium C, and cell extracts prepared as described [2]. To study
the effect of globomycin two 50 ml cultures were inoculated in parallel.
At mid-exponential phase globomycin (kindly donated by Sankyo Co.,
Ltd.) in methanol was added to one of the cultures at a final concen-
tration of 50 lg/ml, and the same volume of methanol was added to
the second culture. After 1 h the cultures were centrifuged and the cells
suspended in Tris–HCl 20 mM, pH 7.6, and broken by sonication.
Analyses by activity-stained native gels and Western blot were per-
formed as described [2].

2.2. Experiments with lipase
The [NiFeSe]m Hase (13 lM) was incubated with 6.66 lg of Rhizo-

pus lipase (from Sigma) in 20 mM Tris–HCl pH 8 (100 ll total vol-
ume). The mixture was incubated at 37 �C and aliquots were
removed at different times for HPLC and gel analysis. Control samples
underwent the same treatment in the absence of lipase. For peptide
analysis a 24 h reaction mixture was dried by speed vacuum and ex-
tracted with methanol for 1 h. After centrifugation the supernatant
was analysed by mass spectrometry.
blished by Elsevier B.V. All rights reserved.
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2.3. HPLC analysis
HPLC analysis was performed in a Beckman Gold HPLC with a

Waters Symetry300 C4 column. The eluents were 0.05% trifluoroacetic
acid and 0.05% trifluoroacetic acid with 80% acetonitrile, gradient 10–
100% in 30 min, flow of 1 ml/min. Detection was performed at 280 and
214 nm. For identification of eluted peaks, the samples were concen-
trated and sequenced using an Applied Biosystem Procise HT 491 se-
quencer.

2.4. Mass spectrometry methods
Mass spectra of the methanolic peptide extracts were assayed in an

Applied Biosystems Voyager-DE STR MALDI-TOF spectrometer as
previously described [1]. The major ion in the mass spectra was sub-
jected to post-source decay (PSD) analysis to obtain composition
information. PSD fragment ion spectra were acquired as described
[10].

The HPLC method described above was used to assay lipase-treated
Hase by LC–MS. These analyses were performed with a Thermo Finn-
igan Surveyor equipment, including an LCQ ion trap mass spectrom-
eter equipped with an ESI source, using the following conditions for
the ESI source: temperature of the heated capillary, 270 �C; electro-
spray voltage 4.5 kV (positive mode). Nitrogen was used as sheath
and auxiliary gas at the flow rates of 80 and 20 arbitrary units, respec-
tively. LC–MS was performed in the positive and full scan modes from
m/z 100 to 2000.
3. Results

The genome of D. vulgaris has 45 genes annotated as coding

for putative lipoproteins, and includes also the genes for the

three enzymes involved in lipoprotein synthesis: Lgt

(DVU0015), Lsp (DVU1928) and Lnt (DVU1860). Strikingly,

the gene coding for the Lsp signal peptidase II is found just

downstream of the locus that includes the [NiFeSe] and

[NiFe]1 Hase genes and some of their maturation proteins

(Fig. 1). This locus includes also a gene coding for a lipase

from the GDSL family (tesA, DVU1925). None of the sub-

units of the [NiFeSe]m Hase is predicted to be a lipoprotein.

However, the fact that the N-terminus of HysA is blocked,

and that a soluble form of the enzyme is missing the first 11

residues of HysA, strongly points to the involvement of this re-

gion in the membrane association. A sequence alignment com-
Fig. 1. The D. vulgaris gene locus containing the Hase genes. hysAB, [NiF
hypC, maturation chaperone; tesA, lipase; lsp, signal peptidase II.
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Fig. 2. Sequence alignment of the large subunit N-terminus of several Desul
[NiFeSe] Hase; DdG20Se, D. desulfuricans G20 [NiFeSe] Hase; DvHNiFe1, D
DdG20NiFe1, D. desulfuricans G20 [NiFe]1 Hase; Soluble Hases: DfNiFe, D.
[NiFe] Hase; DgigasNiFe, D. gigas [NiFe] Hase.
paring the N-terminal sequences of the large subunits of

Desulfovibrio membrane-associated Hases, with others known

to be soluble, revealed a conserved M[S/G]GC motif that is ab-

sent in the soluble enzymes and is reminiscent of a lipobox

(Fig. 2), pointing to the conserved Cys as a possible site for li-

pid modification.

The presence of a lipase in a Hase maturation operon is

unprecedented and prompted us to examine the effect of a li-

pase on the [NiFeSe]m Hase. For this we used a Rhyzopus li-

pase as previously described [11]. The reaction mixture

containing the [NiFeSe]m Hase and lipase was analysed by

HPLC at different time points. The peaks observed were col-

lected and their N-terminal sequenced. This experiment re-

vealed that the lipase slowly converts the large subunit of the

[NiFeSe]m Hase (Fig. 3, peak a) into the large subunit of the

soluble [NiFeSe]s form which starts with Gly12 (Fig. 3, peak

c), whereas the small subunit (peak b) remained unchanged.

In a control experiment without the lipase the two subunits

of the [NiFeSe]m Hase were not affected after the same incuba-

tion time. The reaction mixture was also analysed directly by

LC–MS, and by native gel stained for Hase activity (Fig. 4),

confirming the previous results. This experiment indicates that

treatment with the lipase provokes proteolytic cleavage before

Gly12 of the [NiFeSe]m Hase HysA subunit. This unexpected

result may be explained by contamination of the lipase with

proteases or by the actual lipase acting slowly as a protease.

The lipase reaction (hydrolysis of an ester bond) is quite simi-

lar to that of a protease (hydrolysis of an amide bond) and

many lipases employ a similar mechanism [12]. The reaction

observed was very slow (�24 h), which agrees with a non-spe-

cific nature of the protease reaction. On the other hand, the

peptidic bond between Ala11 and Gly12 is particularly suscep-

tible to hydrolysis as the conversion of the [NiFeSe]m form into

the [NiFeSe]s form can occur spontaneously with manipulation

of the pure enzyme [1].

The peptide cleaved by treatment with the lipase was ex-

tracted and analysed by mass spectrometry. This revealed a

prominent m/z peak with a value of 1601. This mass agrees

with an eight residue peptide corresponding to Cys4 to
eSe] Hase; hynAB1, [NiFe]1 Hase; hynC/hupD, C-terminal peptidases;

TG I IDPVTR
SG I IDPVTR

P S YTG PI IDPVTR
P S YSG PIVVDPVTR
P S YSG PIVVDPITR
P S FTG PIVVDPITR
P S YTG PIVVDPLTR

S G IVVDPITR

fovibrionacae Hases. Membrane-associated Hases: DvHSe, D. vulgaris
. vulgaris [NiFe]1 Hase; DvMNiFe, D. vulgaris Myiazaki [NiFe] Hase;

fructosovorans [NiFe] Hase; Dd27kNiFe, D. desulfuricans ATTC 27774
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Fig. 3. HPLC analysis of the reaction between D. vulgaris [NiFeSe]m
Hase and Rhizopus lipase. Trace 1: reaction mixture of Hase with
lipase at time 0; Trace 2: reaction mixture containing only Hase after a
24 h incubation without lipase; Trace 3: reaction mixture containing
Hase and lipase after a 24 h incubation. Peaks (b) and (c) were
identified by N-terminal analysis as being HysB (GTLTG), and the
HysA subunit of the [NiFeSe]s (GATGR), respectively. Peak (a) has a
blocked N-terminal, which together with the fact that it is being
consumed indicates that it corresponds to the [NiFeSe]m HysA
subunit.
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Fig. 4. Native gel stained for hydrogenase activity: (1) purified
[NiFeSe]s Hase; (2) [NiFeSe]m Hase incubated for 24 h with lipase;
(3) [NiFeSe]m Hase incubated for 24 h without lipase.
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Fig. 5. (A) Western blot on native gel of D. vulgaris crude extracts
with an anti-[NiFeSe] Hase antibody: (1) cells treated with globomycin;
(2) cells not treated with globomycin. (B) Native gel stained for Hase
activity of the same samples and (3) D. vulgaris [NiFe]1 Hase as a
control.
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Ala11 (CTPKAAPA), in which the a-amino group of Cys4 is

acylated, and its sulphydryl is linked to a diacylglyceride, con-

sidering that the three acyl groups correspond to two stearic

(C18:0) and one palmitic (C16:0) groups. The MS/MS spec-

trum of m/z 1601 shows a major peak at 1037. The mass differ-

ence of 565 units can be explained by the loss of the

diacylglyceride part, containing a stearic and a palmitic group.

We also examined the effect of globomycin, a cyclic peptide

that is a specific inhibitor of signal peptidase II [13,14]. Anal-

ysis of cell extracts by native gels using Western blot and activ-

ity staining revealed that in cells treated with globomycin a

second band appears (Fig. 5), corresponding to the prolipo-

protein form of the Hase that accumulates as a result of block-

age of the second step of the lipoprotein maturation. The two

forms could not be distinguished by SDS–PAGE, which would

produce better defined bands, since the mass difference in

HysA is very small, as the prolipoprotein will only have three

more residues (MSG) and one less acyl group than the mature

protein. In the control experiment where globomycin was not

added, the prolipoprotein band was not detected.
4. Discussion

Most uptake [NiFe] Hases are found in the periplasm bound

to the cytoplasmic membrane by a cytochrome b subunit that

is involved in electron transfer with the menaquinone pool,

and a hydrophobic region found in the C-terminus of the small

subunit. In [NiFe] and [NiFeSe] Hases from Desulfovibrio spp.

both the cytochrome b and the membrane anchor of the small

subunit are not present, and the electron acceptor is the soluble

Type I cytochrome c3 [15]. Nevertheless, several Hases from

these organisms have been reported to be membrane-associ-

ated [16], despite being constituted by hydrophilic subunits.

This is the case of the [NiFe]1 and [NiFeSe] Hases from D. vul-

garis, both of which have a large subunit with a blocked N-ter-

minus [1,17]. The maturation of [NiFe] Hases is a complex

process that occurs in the bacterial cytoplasm [3]. The periplas-

mic uptake Hases are thus translocated across the membrane

by the Tat transport system for folded proteins [18]. The

twin-arginine signal peptide is present only in the small sub-

unit, and it has been demonstrated that the catalytic subunit

is co-translocated in a complex with the small subunit [19].

Bacterial lipoproteins described to date are translocated by

the Sec pathway, and their signal peptide is cut by signal pep-

tidase II, which is specific for lipoproteins, whereas signal pep-

tidase I cuts signal peptides of both Sec and Tat translocated

proteins. However, some predicted lipoproteins contain twin-

arginine signal peptides suggesting that lipoprotein transport

by the Tat pathway may also be possible [20], but has never

been demonstrated. The results described here confirm that

the [NiFeSe] Hase is a bacterial lipoprotein, bound to the

membrane by three acyl groups attached to the modified

Cys4 of HysA. This protein is the first example of a lipoprotein

where the signal peptide is limited to the three residues of the

lipobox. The other two regions of lipoprotein signal peptides

are involved in recognition and transport by the Sec pathway.

In the case of HysA they are unnecessary as this protein is

translocated by the Tat pathway in complex with HysB, which

contains a Tat signal peptide. After translocation, the signal

peptide of HysB is cleaved by signal peptidase I, and the pro-

lipoprotein form of HysA with a diacylglyceride bound to

Cys4 is cleaved by peptidase II, removing the first three resi-

dues. The results permit two interesting conclusions: the first

is that lipoprotein synthesis may occur in the absence of a stan-

dard signal peptide with only the lipobox being necessary for

correct lipoprotein processing by the signal peptidase II; the
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second is that such processing may occur with a folded protein,

translocated by the Tat system rather than the usual Sec

system.

In structural terms the N-terminus of HysA is in the oppo-

site side of this protein relative to the HysB subunit, which

indicates that the membrane attachment by the lipidic group

does not interfere with electron transfer between the hydroge-

nase (through HysB) and its electron acceptor, the Type I cyto-

chrome c3 [1]. It is noteworthy that a significant proportion of

this cytochrome is also found associated with the membrane

[15]. The conserved lipobox in the large subunit of several

other Desulfovibrionacae Hases, including the D. vulgaris

[NiFe]1 (but not [NiFe]2 Hase) points to lipid modification also

in these cases. The membrane attachment of these Hases may

be advantageous as the electrons from H2 oxidation will be

transferred to membrane-bound redox complexes through

the Type I cytochrome c3 [15].
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