Desulforubrerythrin from *Campylobacter jejuni*, a novel multidomain protein

Ana F. Pinto · Smilja Todorovic · Peter Hildebrandt · Manabu Yamazaki · Fumio Amano · Shizunobu Igimi · Célia V. Romão · Miguel Teixeira

Received: 10 September 2010 / Accepted: 1 December 2010 © SBIC 2010

Abstract A novel multidomain metalloprotein from *Campylobacter jejuni* was overexpressed in *Escherichia coli*, purified, and extensively characterized. This protein is isolated as a homotetramer of 24-kDa monomers. According to the amino acid sequence, each monomer was predicted to contain three structural domains: an N-terminal desulforedoxin-like domain, followed by a four-helix bundle domain harboring a non-sulfur μ-oxo diiron center, and a rubredoxin-like domain at the C-terminus. The three predicted iron sites were shown to be present and were studied by a combination of UV–vis, EPR, and resonance Raman spectroscopies, which allowed the determination of the electronic and redox properties of each site. The protein contains two FeCys$_4$ centers with reduction potentials of +240 mV (desulforedoxin-like center) and +185 mV (rubredoxin-like center). These centers are in the high-spin configuration in the as-isolated ferric form. The protein further accommodates a μ-oxo-bridged diiron site with reduction potentials of +270 and +235 mV for the two sequential redox transitions. The protein is rapidly reoxidized by hydrogen peroxide and has a significant NADH-linked hydrogen peroxide reductase activity of 1.8 μmol H$_2$O$_2$ min$^{-1}$ mg$^{-1}$. Owing to its building blocks and its homology to the rubrerythrin family, the protein is named desulforubrerythrin. It represents a novel example of the large diversity of the organization of domains exhibited by this enzyme family.

Keywords Rubrerythrin · Hydrogen peroxide · Rubredoxin · Electron paramagnetic resonance · Resonance Raman spectroscopy

Abbreviations

Ctb *Campylobacter* truncated hemoglobin

Dps DNA-binding protein from starved cells

DRbr Desulfurubrerythrin

Flrd-Red NADH:flavorubredoxin oxidoreductase

FuR Ferric uptake regulator

ICP Inductively coupled plasma

KPi Potassium phosphate

PerR Peroxide regulator

rbo Rubredoxin oxidoreductase

Rd-Flrd Rubredoxin domain of flavorubredoxin

Rrc Rubrerythrin-like protein from *Campylobacter jejuni*
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Tris Tris(hydroxymethyl)aminomethane

Introduction

Campylobacter jejuni is a Gram-negative pathogenic proteobacterium of the epsilon group. It is the leading cause of food-borne diarrheal disease worldwide, having an infection dose as low as 500–800 bacteria; about two million cases per year of C. jejuni-associated gastroenteritis are estimated to occur just in the USA, and severer sequelae may occur subsequent to C. jejuni infection [1, 2]. C. jejuni colonizes the small bowel and the colon, where it finds a microaerobic environment. In fact, C. jejuni is only able to grow at low-oxygen partial pressures [3, 4]. The microaerobic lifestyle is made possible by a concerted interplay of oxygen-consuming enzymes (namely, the cbb$_3$-type oxygen reductase [5], which has a high oxygen affinity [6]) and oxidative-stress-responsive enzymes: microaerophiles such as C. jejuni are particularly vulnerable to the detrimental effects of oxidative stress and need to have efficient mechanisms to eliminate oxygen and its toxic species. Indeed, the genomes of Campylobacter species reveal the presence of genes coding for several of the canonical enzymes involved in detoxification of reactive oxygen species, such as catalase, superoxide dismutase, alkyl hydroperoxide reductase, Campylobacter truncated hemoglobin (Ctb), thiol peroxidase, DNA-binding protein from starved cells (Dps), and ferritin [7–10]. Some of these enzymes have been shown to be important for the colonization and persistence of C. jejuni within macrophages [11, 12]. Apart from those enzymes, in recent years several novel systems involved in oxidative stress response have been described in anaerobes and microaerobes. Among them are the superoxide reductases and rubrerythrins [13, 14]. Whereas superoxide reductases directly eliminate the superoxide anion by its reduction to hydrogen peroxide, rubrerythrins have been proposed to eliminate hydrogen peroxide through its reduction to water. Rubrerythrins constitute a family of proteins with two types of iron sites: a non-sulfur diiron center of the μ-oxo-bridged histidine/carboxylate family, located in a four-helix-bundle structural domain, and a rubredoxin-type [FeCys$_3$] center, located at the C-terminal in most rubrerythrins. These proteins received this trivial name owing to the presence of the rubredoxin-like and hemerythrin-like diiron centers [15, 16]. Since the identification of the first rubrerythrin in the sulfate-reducing bacterium Desulfovibrio vulgaris [15], they have been found in the most diverse organisms of the three life domains, Archaea, Bacteria, and Eukarya [17–19]. Several physiological roles were proposed for these proteins, but the most consensual is hydrogen peroxide reduction, linked to NAD(P)H oxidation [20, 21]. Rubrerythrins have been found to complement catalase-null strains, and rubrerythrin-deletion mutants are more sensitive to oxygen and hydrogen peroxide [22]. In the genome of C. jejuni NCTC 11168 there is a gene, cj0012c, that encodes for a rubrerythrin-like protein [23]. This protein was identified by Yamasaki et al. [23] and they verified that the expression of C. jejuni cell extracts to different concentrations of H$_2$O$_2$ led to the degradation of cj0012c, suggesting that it is involved in the H$_2$O$_2$ oxidative stress response. A preliminary analysis of the deduced amino acid sequence suggested the presence of an additional domain at the N-terminus, apart from the rubrerythrin ones, namely, a putative desulfoferrodoxin-like domain, which led to the initially proposed name for this protein: rubredoxin oxidoreductase (rbo, the previous designation for desulfoferrodoxins)—rubrerythrin-like protein from Campylobacter jejuni (Rrc) [23]. Desulfoferrodoxins are 2Fe superoxide reductases, which have at the N-terminus a noncatalytic desulfoferrodoxin-like domain [13]. Quite importantly, it was shown that the cj0012c gene was regulated by peroxide regulator (PerR) [12] as well as by ferric uptake regulator (Fur) [24, 25], which suggests its involvement in oxidative stress response as previously proposed [23]. Bacterial factors that combat reactive species enable the organisms to persist inside host cells, including macrophages, i.e., elucidation of oxidative stress responses is critical to understanding pathophysiological processes [4]. Therefore, we set out to extensively characterize this novel protein from C. jejuni, identify its three metal sites, and establish its in vitro function as an NADH-linked hydrogen peroxide reductase. Furthermore, owing to the unambiguous identification of each protein domain, we have renamed the protein desulforubrerythrin (DRbr) and will use this designation throughout the article.

Materials and methods

Expression of recombinant DRbr

The pMAL system (New England Biolabs) [26] was used for cloning the gene cj0012c from C. jejuni NCTC11168 as previously described [23] and was transformed into Escherichia coli strain BL21DE3 cells. Overexpression of DRbr was performed by growing this strain aerobically at 37 °C in M9 minimal medium, with 20 mM glucose, 400 μM FeSO$_4$, and 100 μg/ml ampicillin. When the optical density at 600 nm reached 0.3, isopropyl-1-thio-β-D-galactopyranoside was added (250 μM final concentration), and after approximately 16 h the cells were harvested by centrifugation, resuspended in a buffer containing 50 mM tris(hydroxymethyl)aminomethane (Tris)–HCl (pH 8), 100 mM NaCl, 1 mM MgCl$_2$, 0.1 mg/ml lysozyme, and...
20 μg/ml DNase, and stored at −80 °C. The high amount of iron was essential to obtain the protein with the correct amount of iron incorporated.

Purification of recombinant DRbr

All purification procedures were carried out under anaerobic conditions at 4 °C, in a Coy glove box, with an O2-free atmosphere constituted by a mixture of 95% argon and 5% hydrogen; all buffers were degassed and flushed with argon. The DRbr was followed throughout the purification procedure by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) [27] and UV–vis spectroscopy. The soluble cellular extract was obtained after passing the cell suspension three times through a French press (35,000 psi), followed by ultracentrifugation at 125,000g for 1 h at 4 °C. It was subsequently applied onto a Q-Sepharose Fast Flow column (XK 26/10, GE Healthcare) previously equilibrated with 20 mM Tris–HCl (pH 7.2), and was eluted at 2 ml/min with a linear gradient from 0 to 1 M NaCl in the same buffer. The DRbr fraction which was eluted at approximately 0.2 M NaCl was then dialyzed overnight against 10 mM potassium phosphate (KPi) pH 7.0 buffer and loaded onto a Bio-Gel hydroxyapatite type II column (XK 16/40, Bio-Rad), equilibrated with the same buffer. The protein was eluted with a linear gradient from 0 to 1 M KPi at pH 7.0. Fractions containing the protein were concentrated and its purity was verified by SDS-PAGE.

Determination of protein concentration, metal content, and molecular mass

The protein concentration was assayed by the bicinchoninic acid method [28], and the iron content was determined using 2,4,6-tripryridyl-1,2,3-triazine [29] and by inductively coupled plasma (ICP) emission spectrometry; the zinc content was also evaluated by ICP emission spectrometry. The molecular mass of the protein was determined by size-exclusion chromatography on a Superdex 200 column (XK 10/300, GE Healthcare), using appropriate molecular mass standards.

Sequence alignment and dendrogram

Amino acid sequence alignments and dendrogram construction were performed with ClustalX [30] and GeneDoc [31] and the dendrogram was displayed with TreeView [32].

Spectroscopies

UV–vis spectra were acquired with a Shimadzu UV-1603 spectrophotometer; EPR spectra were collected with a Bruker EMX spectrometer, equipped with an ESR 900 continuous-flow helium cryostat from Oxford Instruments.

For resonance Raman studies, about 2 μl of 3 mM protein (in 20 mM Tris–HCl at pH 7.2) was introduced into a liquid-nitrogen-cooled cryostat (Linkam THMS600) mounted on a microscope stage and cooled to 83 K. Spectra of the frozen sample were collected in backscattering geometry using a confocal microscope coupled to the Raman spectrometer (Jobin Yvon U1000), and the 413-nm excitation line from a krypton ion laser (Coherent Innova 302). For isotopic labeling experiments, the protein was lyophilized and then redissolved in H218O or D2O, and measured as described above. Typically, spectra were accumulated for 60 s with a laser power at the sample of 8 mW. After polynomial background subtraction, the frequencies and line widths of the Raman bands were determined.

Redox titrations

Redox titrations followed by EPR spectroscopy were performed anaerobically in 50 mM Tris–HCl (pH 7.2) at 25 °C, by stepwise addition of buffered (250 mM Tris–HCl at pH 9.0) sodium dithionite as a reductant or H2O2 as an oxidant. A 100 μM protein solution, platinum and Ag/AgCl electrodes, and the following redox mediators (40 μM each) were used: potassium ferricyanide (E° = +340 mV), N,N-dimethyl-p-phenylenediamine (E° = +340 mV), tetramethyl-p-phenylenediamine (E° = +260 mV), 1,2-naphthoquinone-4-sulfonic acid (E° = +215 mV), 1,2-naphthoquinone (E° = +180 mV), trimethylhydroquinone (E° = +115 mV), 1,4-naphthoquinone (E° = +60 mV), menadione (E° = 0 mV), plumbagin (E° = −40 mV), indigo trisulfonate (E° = −70 mV), phenazine (E° = −125 mV), 2-hydroxy-1,4-naphthoquinone (E° = −152 mV), and anthraquinone-2-sulfonate (E° = −225 mV). The electrodes were calibrated with a saturated quinhydrone solution at pH 7.0. The reduction potentials are reported with the standard hydrogen electrode as a reference. All experimental data were analyzed using Nernst equations for noninteracting redox centers considering single one-electron transitions for the rubredoxin and desulfredoxin domains, and two consecutive one-electron processes for the diiron center.

Peroxidase activities with artificial electron donors (o-dianisidine and guaiacol)

H2O2-dependent oxidation of o-dianisidine and guaiacol was followed at 460 and 470 nm, respectively, at room
temperature as a function of time in anaerobic conditions. For the two assays, 50 mM Tris–HCl pH 7.2 degassed under an argon flux was used and the final concentrations were as follows: 1 μM DRbr, 250 μM H₂O₂, and 1 mM o-dianisidine (ε₄₆₀ = 11.3 mM⁻¹ cm⁻¹), and 5 mM guaiacol (ε₄₇₀ = 26.6 mM⁻¹ cm⁻¹).

NADH-linked hydrogen peroxide reductase activity

As artificial electron-donating systems, a mixture of NADH:flavoredoxin oxidoreductase (Flrd-Red) and the rubredoxin domain of flavoredoxin (Rd-Flrd) [33], both from E. coli, were used. The E. coli proteins were purified as described in [33, 34]. The enzyme activity was measured anaerobically (under an argon atmosphere) at room temperature in 50 mM Tris–HCl (pH 7.2) in a closed spectrophotometric cell containing 150 μM NADH, 2 μM Flrd-Red, 4 μM Rd-Flrd, 200–500 nM DRbr, and 10 μM of H₂O₂. The NADH oxidation, initiated by addition of DRbr, was monitored by the decrease in absorbance at 340 nm (ε = 6,220 mM⁻¹ cm⁻¹).

Results and discussion

Biochemical characterization

The DRbr was overexpressed in E. coli, grown in minimal medium supplemented with iron, and purified anaerobically through a three-step chromatographic process; from 1 l of culture medium approximately 60 mg of pure protein was obtained. The quantification of iron and zinc per mole of monomer gave 3.5 ± 0.2 and 0.17 ± 0.1, respectively, confirming that DRbr has approximately four iron atoms per monomer and virtually no zinc atoms.

By SDS-PAGE a single band at approximately 25 kDa was detected (Fig. S1), in agreement with the molecular mass deduced from the amino acid sequence, 24,526 Da. The elution profile in a gel filtration column revealed that the protein in solution is mainly in a form with a molecular mass of approximately 97 kDa, i.e., it forms a tetramer. Note that, in general, rubrerythrins are isolated as homodimers in solution [35, 36], whereas the X-ray structures of these proteins suggest either a dimeric or a tetrameric quaternary structure [35, 37, 38].

UV–vis spectra

The UV–vis spectrum of native (oxidized) DRbr (Fig. 1a, trace a) shows bands at 370, 490, and 560 nm, with an absorbance ratio A₃₇₀/A₄₉₀ of 3.7. These features are reminiscent of [FeCys₄] ferric sites; diiron sites have, in general, low molar absorptivities, and so they are difficult to detect when in the presence of other chromophores. Figure 1b displays the spectra of a desulforedoxin-like center (Fig. 1b, trace a) and of a canonical rubredoxin (Fig. 1b, trace b). The addition of those two spectra in a 1:1 ratio (Fig. 1b, trace c) generates a spectrum with features almost identical to those of oxidized DRbr (Fig. 1b, trace d), including the relative absorbances at each maximum. In fact, the main difference between rubredoxin- and desulforedoxin-like sites resides in the relative absorbances of each main band: at 370 nm both iron centers have similar contributions, whereas at 490 nm, the spectral contribution of the rubredoxin site is approximately 50% higher than that of the desulforedoxin site. A deconvolution of the
components of the spectrum of the *C. jejuni* protein could be obtained after its partial reduction with sodium dithionite. Subtracting the spectrum of substoichiometrically reduced DRbr (Fig. 1b, trace b) from the spectrum of the oxidized form (Fig. 1a, trace a) reveals features identical to those of desulforedoxin (Fig. 1a, inset) [39], which further corroborates the presence of a rubredoxin site and a desulforedoxin site. Furthermore, the finding that the subtraction described yields the spectrum of a desulforedoxin indicates that this site has a reduction potential higher than that of the rubredoxin site. Complete reduction leads to the full bleaching of the visible absorption (Fig. 1a, trace c).

EPR spectra

The EPR spectrum at 7 K of the as-isolated DRbr (Fig. 2, trace a) displays several resonances at low magnetic fields, characteristic of high-spin (\(S = 5/2\)) ferric ions, and at \(g\) values slightly lower than 2, due to an \(S = 1/2\) center. The resonances at low field could be deconvoluted into three distinct components, differing by the ratio of the zero-field splitting terms (rhombicity, \(E/D\)). By comparison with the corresponding \(g\) values of *D. gigas* desulforedoxin [39] and canonical rubredoxins (as well as of rubrerythrins) [40], the resonances due to the center with lower rhombicity (\(E/D = 0.1\), \(g = 8.0\) and \(g = 3.6\) from the \(1M_s = \pm 1/2 >\) doublet and \(g = 5.6\) from the \(1M_s = \pm 3/2 >\) doublet) can be assigned to the desulforedoxin-like center, whereas those with \(g\) values of 4.85 and 3.65 (\(1M_s = \pm 3/2 >\) doublet), and \(g = 9.3\) (ground or excited doublet), are attributed to the rubredoxin-like center (with \(E/D = 0.23\)). This assignment is corroborated by the analysis of spectra obtained with partially reduced samples (Fig. 2, traces b and c), and taking into account that the desulforedoxin-like center is the one with the higher reduction potential. In fact, the first set of resonances to disappear from the spectra upon partial reduction are those of the spin system with \(E/D = 0.1\). A third component is discernible in the spectra, with \(g = 4.3\) and \(E/D = 0.33\), which may be due to some heterogeneity at the ferric sites.

The resonances with \(g\) values of 1.98, 1.76, and 1.66, better observed in a partially reduced state (Fig. 2, trace b), are detected up to approximately 20 K and are characteristic of an \(S = 1/2\) center with antiferromagnetically coupled iron atoms in a mixed-valence (\(Fe^{III}–Fe^{II}\)) state [15, 41]. In the fully oxidized and reduced states, these resonances vanish (not shown), as characteristic of diiron centers of the histidine/carboxylate family, which form diferric or diferrous states with zero or even total spin [41]. No signals could be detected with parallel-mode EPR spectroscopy for either of those redox forms of the diiron center, which suggests either \(S = 0\) total spin or a large value for the zero-field splitting.

Resonance Raman spectroscopy

The resonance Raman spectra of DRbr in the as-isolated state, obtained with 413-nm excitation, show several bands in the low-frequency region (Fig. 3, trace a). The bands at 316, 366, and 383 cm\(^{-1}\) are attributed to modes involving the Fe–S coordinates originating from both the rubredoxin and the desulforedoxin centers [41, 42]. In addition, a broad band at 520 cm\(^{-1}\) indicates the presence of an oxygen-bridged diiron center. This mode lies in the range of symmetric Fe–O–Fe stretching modes (\(v_s\)) of \(\mu\)-oxo-bridged diiron centers found in proteins and model complexes, and exhibits a large bandwidth as previously observed [43, 44]. The \(v_s\) band is well defined in the spectra of ferricyanide-oxidized DRbr (data not shown) and \(H_2O_2\)-oxidized DRbr (Fig. 3, trace b). The assignment of the 520 cm\(^{-1}\) band is further supported by the results of isotopic labeling. For these experiments, the protein was lyophilized and then redissolved in \(H_2O\) to substitute the bridging oxygen by \(^{18}O\) [44–46]. The UV–vis absorption spectrum confirmed that the protein remained intact upon removal and subsequent addition of water (data not shown). As a consequence of the isotopic substitution, the 520 cm\(^{-1}\) band undergoes a downshift by approximately

Fig. 2 EPR spectra of *C. jejuni* DRbr: a DRbr as isolated; b and c are spectra of DRbr upon successive addition of substoichiometric amounts of sodium ascorbate. The protein concentration was 200 \(\mu\)M in 20 mM Tris–HCl (pH 7.2) and 150 mM NaCl. Experimental conditions were as follows: 7 K; microwave power, 2 mW; microwave frequency, 9.38 GHz; modulation amplitude, 1 mT.
both the energy of the Fe–O–Fe stretching and the \(^{18}\text{O}/^{16}\text{O}\) at the sample of 8 mW measured at 83 K with an accumulation time of 60 s and a laser power of 413-nm excitation: a DRbr in the as-isolated state; b DRbr in the \(\text{H}_2\text{O}_2\)-oxidized state (essentially identical to the spectra of the ferricyanide-oxidized protein, data not shown); c DRbr in \(\text{H}_2\text{O}_2\); d DRbr in \(\text{D}_2\text{O}\); and e ascorbate-reduced DRbr. The spectra were measured at 8 K with an accumulation time of 60 s and a laser power of 17 cm\(^{-1}\) to 503 cm\(^{-1}\) (Fig. 3, trace c). The magnitude of the \(^{18}\text{O}/^{16}\text{O}\) shift of the \(v_\text{c}\) mode (\(\Delta v_\text{c}\) is characteristic of \(\mu\)-oxo-bridged diiron centers [42, 44, 47, 48]. In particular, both the energy of the Fe–O–Fe stretching and the \(^{18}\text{O}/^{16}\text{O}\) shift observed in DRbr are identical to the respective values reported for the diiron-oxo center in stearoyl–acyl carrier protein desaturase [44]. In that enzyme, the calculated Fe–O–Fe bond angle is 123°. Therefore, a similar value should hold for the DRbr diiron center, since there is a direct correlation of \(v_\text{c}\) and \(\Delta v_\text{c}\) with the geometry of the center. The subtle downshift of the band observed after dissolving the lyophilized protein in \(\text{D}_2\text{O}\) might reflect hydrogen-bonding interactions of the bridging oxygen but rules out the involvement of a hydroxyl ligand (Fig. 3, trace d).

Upon reduction of the protein with ascorbate, the 520 cm\(^{-1}\) band disappears. This finding can be readily attributed to the lack of resonance enhancement owing to the absence of an electronic transition in the ferrous form of the diiron center (Fig. 3, trace e). Note that \(^{18}\text{O}/^{16}\text{O}\) and D/H exchange as well as reduction by ascorbate affect the vibrational modes of the rubredoxin and desulfoferredoxin centers only within the experimental accuracy (±1 cm\(^{-1}\)).

Potentiometric characterization

The reduction potentials of each center were determined by redox titrations monitored by EPR spectroscopy. For the rubredoxin center (monitored at \(g = 9.3\)), a reduction potential of \(+185 \pm 30\) mV was determined, whereas for the desulfoferredoxin center (monitored at \(g = 8.0\) and \(g = 5.6\)), a value of \(+240 \pm 30\) mV was obtained (Fig. 4a, c). For the diiron center, the changes in intensity at the \(g = 1.76\) and \(g = 1.66\) resonances were monitored. The bell-shaped data dependence was analyzed on the basis of a Nernst equation for two consecutive mono-electronic processes, yielding reduction potentials of \(+270 \pm 20\) and \(+235 \pm 20\) mV for the first \((\text{Fe}^{\text{III}}–\text{Fe}^{\text{III}}/\text{Fe}^{\text{III}}–\text{Fe}^{\text{II}})\) and second \((\text{Fe}^{\text{III}}–\text{Fe}^{\text{II}}/\text{Fe}^{\text{II}}–\text{Fe}^{\text{II}})\) steps, respectively.

The reduction potentials for the diiron center are within the values reported for the equivalent sites in rubrerythrins [41]. In contrast, the value determined for the desulfoferredoxin-like site, \(+240\) mV, is quite high, as compared with the values of \(D.\ gigas\) desulfoferredoxin (\(-35\) mV [49]) and of the desulfoferredoxin-like centers in desulfoferredoxins (approximately 0 to \(-60\) mV [50, 51]). In turn, the value obtained for the rubredoxin site, \(+185\) mV, is lower than the values reported for the corresponding rubredoxin centers in rubrerythrins (\(+230\) to \(+281\) mV [15, 52]), but is still much higher than the values for isolated rubredoxins (generally, \(-100\) to \(+50\) mV [40]). This observed difference may be partially explained by the presence of several amino acid substitutions in DRbr close to the iron-binding cysteines (vide infra).

NADH: \(\text{H}_2\text{O}_2\) reductase activity

Having established the presence of the initially proposed metal centers, and determined their redox properties, we addressed the physiological role of \(C.\ jejuni\) DRbr.

Assays for peroxidase activity using as electron donors \(o\)-dianisidine and guaiacol in anaerobic conditions gave no activity. As observed for some rubrerythrins, DRbr is only slowly oxidized by oxygen, but rapidly (in the submillisecond range) by hydrogen peroxide (Fig. S2). The physiological electron donors of DRbr are not known, hampering a proper assay system for \(\text{NAD(P)}\text{H}:\text{H}_2\text{O}_2\) oxidoreductase activity. Nevertheless, it was found that \(E.\ coli\) Flrd-Red was able to reduce DRbr in the presence of \(E.\ coli\) Rd-Flrd. Therefore, oxidation of NADH was monitored upon addition of \(\text{H}_2\text{O}_2\) to a mixture containing catalytic amounts of Flrd-Red, Rd-Flrd, and DRbr (Fig. S3). An activity of \(1.8 \pm 0.4\) \(\mu\text{mol} \text{H}_2\text{O}_2\text{ min}^{-1} \text{ mg}^{-1}\) was obtained, which is similar to the values reported for other rubrerythrins, which range from \(0.12\) \(\mu\text{mol} \text{H}_2\text{O}_2\text{ min}^{-1} \text{ mg}^{-1}\) for the \(Entamoeba\ histolytica\) enzyme [53] to \(0.99\) \(\mu\text{mol} \text{H}_2\text{O}_2\text{ min}^{-1} \text{ mg}^{-1}\) for the \(Clostridium\ acetobutylicum\) protein [54]. Moreover, the NADH-to-\(\text{H}_2\text{O}_2\) ratio was found to be 1 in the DRbr activity assays, which indicates that hydrogen peroxide was reduced to water. Therefore, we may conclude that, as rubrerythrins, \(C.\ jejuni\) DRbr has a role in detoxification of hydrogen peroxide.
The amino acid sequences of *C. jejuni* DRbr and *D. vulgaris* rubrerythrin were used to search the sequence databases, from which 302 sequences of rubrerythrin-like homologous proteins were retrieved. These proteins are widespread in both prokaryotic domains, Archaea and Bacteria, in strictly anaerobic, facultative, or aerobic microorganisms and were also found in the genomes of eukaryotes such as the anaerobic protozoa *E. histolytica*, *Entamoeba dispar*, and *Trichomonas vaginalis*, and the photosynthetic protozoan *Cyanophora paradoxa*.

Analysis of the deduced sequences allowed us to establish that the large rubrerythrin family contains members composed of a quite diverse combination of four main types of structural domains: rubredoxin or desulforedoxin, four-helix bundle, and flavin reductase, as shown in Fig. S4. The distinctive feature of the family is the presence of the four-helix-bundle domain, harboring a diiron site and, thus, having the metal ligands conserved (see below). The simplest members of the family consist only of this domain, and were named erythrins [55], or, in the case of the protein isolated from *Sulfolobus tokodaiii*, sulerythrin [56]. The rubredoxin and desulforedoxin domains are structurally similar, having in general two α-helices and two or three β-strands [40, 49], and harboring an iron coordinated by four cysteines, which acts as an electron transfer site. However, these two domains exhibit a major difference: in rubredoxins, the cysteines of the two pairs have two residues indicated.

DRbr domains and sequence analysis

Fig. 4 Redox titration of DRbr, monitored by EPR spectroscopy. a Rubredoxin center, intensity changes of the *g* = 9.3 resonance (squares); desulforedoxin center, intensity changes of the *g* = 5.6 (filled circles) and *g* = 8.0 (open circles) resonances. The solid lines were calculated by Nernst equations for mono- or di-electronic processes, with *E* = +185 mV and *E* = +240 mV. b EPR spectra of the redox titration of the rubredoxin and desulforedoxin centers at the potentials indicated. c Diiron center, intensity changes of the *g* = 1.76 (filled circles) and *g* = 1.66 (open circles) resonances; the solid line corresponds to a Nernst equation for two consecutive one-electron processes (*E*₁ = +270 and *E*₂ = +235 mV). The EPR signals were normalized in relation to the maximum intensity of each resonance. d EPR spectra of the redox titration of the diiron center at the potentials indicated.
between them, C–(X)₂–C, whereas in desulfoferredoxins, the
cysteines of the second pair are consecutive. The rubredoxin
domains may appear at the N-terminus or at the C-terminus of
rubrerythrins or even at both positions (see Fig. S4), whereas so far
the desulfoferredoxin-like domain has been found only at the N-terminus. The rubredoxin
domains from rubrerythrins can also be distinguished on
the basis of the number of amino acids that separate the
two pairs of cysteines: in most rubredoxin domains, this
number is around 12, whereas in the equivalent domains
from rubrerythrins from cyanobacteria and most isolated
rubredoxins it is higher, about 30 amino acids, with the
exception of the rubredoxin from

D. desulfuricans
ATCC 2774, which has 22. Another interesting difference
between rubredoxin and desulfoferredoxin domains comes
from their distribution: rubredoxins constitute, by them-
selves, a well-established family of proteins, widespread
among prokaryotes and present also in a few eukaryotes,
but may also appear as domains in several complex
proteins, including the rubrerythrins or the flavorubre-
doxins [33]. In contrast, very few desulfoferredoxins are
known; so far, only one protein has been purified from,
D. gigas [39], and two orthologues were identified in the
genomes of

Methanosarcina acetivorans C2A and

Dehalococcoides sp. CBDB1. Desulfoferredoxin-like
domains are a fingerprint of the 2Fe superoxide reductases, or
desulfoferredoxins [13, 14, 50, 51].

A dendogram was built from the amino acid sequence
alignment, using the neighbor-joining method available in
Clustal X [30] (Fig. S4). Owing to the presence of different
domains, the dendrogram was constructed taking into
consideration only the amino acid sequence alignment of
the common four-helix-bundle domain. The only well-
defined monophyletic group in this dendogram is repre-
sented by the cyanobacteria. The remaining organisms,
from the Bacteria, Archaea, and Eukarya domains, are
scattered in the dendogram. The sequences cluster mainly
according to the subfamilies of rubrerythrins, i.e., to
the types of structural domains, although several exceptions
were detected (not shown); in particular, the DRbrs form a
separate cluster.

The amino acid sequence of

C. jejuni
DRbr corroborates
the presence of three distinct metal sites from three dif-
f erent structural domains (Figs. 5, S4): (1) a desulfo-
ferredoxin-like domain at the N-terminus, with a C–X₂–C–X₁₅–
C–C motif, which precedes the rubrerythrin-like fingerprint,
(2) a predicted four-helix-bundle domain, and (3) a
subsequent rubredoxin-like domain, with a C–X₂–C–X₁₂–
C–X₂–C motif at the C-terminus. DRbr is the first example
of a characterized protein with the combination of these
three structural domains, which is conserved in all

Campylobacter species that have sequenced genomes (C. coli
RM 2228, C. lari RM 2100, C. upsaliensis RM 3195,
C. hominis ATCC BAA-381, and C. concisus 13826).
Genes encoding other orthologues were also found in other proteobacteria: *Helicobacter winghamensis*, *Sulfospirillum deleyianum*, *Sulforavum* sp., *Wolinella succinogenes*, and *Vibrio shilonii* (Fig. 5). The highest amino acid sequence identities and similarities of *C. jejuni* DRbr are with the orthologues from the same genus (approximately 90% identity) (Fig. 5). The proteins from *W. succinogenes* DSM 1740, *H. winghamensis*, and *S. deleyianum*, organisms that belong to the same order as *Campylobacter*, also have high identities and similarities with *C. jejuni* DRbr (approximately 70–85% identity). The average identity with rubrerythrins is 45–55%, with lower similarities with the “single domain” erythrin-like proteins.

It was concluded from the amino acid sequence alignment that all the amino acid residues involved as ligands of the binuclear center, on the four-helix bundle, and the four cysteines from the rubredoxin domain in the rubrerythrin family are strictly conserved in the DRbr sequences (Fig. 5): the ligands for the metal ions of the diiron site are E52–(X)32–E85–(X)2–H88–(X)30–E119–(X)2–E122–(X)30–E153–(X)2–H156 (numbering according to the *C. jejuni* DRbr); two tyrosines, whose homologues in the protein from *D. vulgaris* form hydrogen bonds with two glutamate ligands [38, 57]—Y59 (hydrogen bond with E119) and Y127 (hydrogen bond with E52), are also conserved; the binding motif for the rubredoxin domain is C183–(X)2–C186–(X)2–C199–(X)2–C202.

The analysis of the amino acid sequences of the rubredoxin domains suggests a possible explanation for the lower reduction potential of the rubredoxin center of *C. jejuni* DRbr, in comparison with those from rubrerythrins. The high reduction potential of the rubredoxin site in rubrerythrins (\(E_0 \approx +250\) mV) was attributed to the presence of a few amino acid substitutions in the cysteine binding loops, as compared with canonical rubredoxins, such as the *C. pasteurianum* protein (\(E_0 = \approx -57\) mV): the –CxVC– and –CpLCgV– motifs of this rubredoxin are substituted by –CxNC– and –CpACgH– in *D. vulgaris* rubrerythrin (Fig. 5) [57]. The presence of the asparagine and histidine residues changes the electrostatic environment near the iron ion, leading to an increase of the reduction potential [57, 58]. The sequence of *C. jejuni* DRbr shows the –CxVC– and –CpLCkA– motifs, i.e., it is more similar to that of *C. pasteurianum* rubredoxin than to the sequences of rubrerythrins. Interestingly, the motif found for *C. jejuni* DRbr is also present in all other DRbrs. Nevertheless, a detailed comparison of the electrostatics around the iron site can be made only once the three-dimensional structure of DRbr is available.

In summary, we have characterized a novel protein from the pathogen *C. jejuni*. It contains a distinct combination of structural modules: a desulfoferredoxin-like domain, a four-helix-bundle domain, and a rubredoxin-like domain. The presence of the latter two domains allows classification of the protein as a member of the large family of rubrerythrins. The combination of these three building blocks justifies the new name proposed for this protein, desulfourubrerythrin (DRbr). The spectroscopic data show that the protein contains unequivocally two FeCys\(_4\) centers (desulfoferredoxin- and rubredoxin-like) and a diiron center of the histidine/carboxylate type, with a µ-oxo bridge in the oxidized state.

We further showed that the protein has a hydrogen peroxide reductase activity, which agrees well with the fact that it is regulated by PerR and may play an important role in protection against oxidative stress conditions, contributing to sustaining the strict microaerophilic lifestyle of *C. jejuni*.

Acknowledgments This work was financed by Fundação para a Ciência e Tecnologia projects PTDC/BiaPro/67263/2006 (MT) and PTDC/BiaPro/67240/2006 (CVR). A.F.P. is recipient of the Ph.D. grant SFRH/BD/41355/2007. We thank Fay Mossel and João V. Rodrigues for their collaboration at early stages of this work. ICP emission spectrometry analyses were performed at the Laboratório de Análises (523-A), Departamento de Química, CQFB/REQUIMTE, FC/T/UNL.

References