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Biological research has focused in the past on model organisms
and most of the functional genomics studies in the field of plant
sciences are still performed on model species or species that
are characterized to a great extent. However, numerous non-
model plants are essential as food, feed, or energy resource.
Some features and processes are unique to these plant species
or families and cannot be approached via a model plant. The
power of all proteomic and transcriptomic methods, that is,
high-throughput identification of candidate gene products, tends
to be lost in non-model species due to the lack of genomic
information or due to the sequence divergence to a related
model organism. Nevertheless, a proteomics approach has a
great potential to study non-model species. This work reviews
non-model plants from a proteomic angle and provides an
outline of the problems encountered when initiating the
proteome analysis of a non-model organism. The review tackles
problems associated with (i) sample preparation, (ii) the
analysis and interpretation of a complex data set, (iii) the
protein identification via MS, and (iv) data management and
integration. We will illustrate the power of 2DE for non-model
plants in combination with multivariate data analysis and
MS/MS identification and will evaluate possible alternatives.
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I. INTRODUCTION: GENE EXPRESSION
PROFILING AND UNDERSTANDING GENE
FUNCTION IN NON-MODEL PLANT SYSTEMS

A. Non-Model Plant Systems and Proteomics

In past decades, the term ‘‘model organism’’ has been narrowly
applied to species that facilitate experimental laboratory research
because of their particular size and generation time. Research
communities have focused on model organisms to gain insight
into some general principles that underlie various disciplines.
The first and only classical plant model, Arabidopsis thaliana, is
ideal for laboratory studies. It has a short life cycle, a small size,
an important production of seeds and a relatively small genome
that is completely sequenced (Arabidopsis Genome Initiative,
2000). To date 67% of the Arabidopsis genome is covered by
annotated genes (TAIR7 genome statistics). However, with the
recent increase in the number of genome-sequencing projects, the
definition of model organism has broadened (Hedges, 2002).
Advances in high-throughput and computational technologies
have resulted nowadays in the genome sequencing of hundreds
of organisms across the three domains of life. Currently,
645 genomes are considered to be completely sequenced and
publicly available and the number is still growing (www.geno-
mesonline.org). Those species fall under the new and broad
definition of ‘‘model organism.’’ In most cases, economics has
had an important impact on the choice of organism to study. The
green plants or Viriplantae are largely under-represented
with only two plant genomes completed, publicly available and
reasonably well annotated: A. thaliana (thale cress, �120 Mb,
5 chromosomes) and Oryza sativa (japonica cultivar-group)
(rice, �450 Mb, 12 chromosomes). The manageable size of the
rice genome (though almost 4 times the size of Arabidopsis) and
the fact that rice is a staple food for half of the world’s population
led to the effort of unraveling its sequence (Barry, 2001; Goff
et al., 2002; Yu et al., 2002). The NCBI Plant Genomes Central
considers also Medicago truncatula (barrel medic,�500 Mb and
8 chromosomes) and Populus trichocarpa (black cottonwood,
�550 Mb, 19 chromosomes) (Tuskan et al., 2006) as completed
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large scale sequencing projects. All those new model plants have
a relatively small genome size but are not necessary ideal as
a laboratory model. The NCBI Plant Genomes Central
expects that the genome sequencing of Lotus japonicus (lotus),
Manihot esulenta (cassava), Solanum lycopersicum (tomato),
Solanum tuberosum (potato), Sorghum bicolor (sorghum), and
Zea mays (corn) will be completed and the data will be publicly
available in the near future. However, there are approximately
300,000 known species of land plants but the model plants
represent only a handful of species and families. Even the arrival
of new model plants cannot reflect the biodiversity of the plant
kingdom and all the economic or agricultural interests. The
genome size of non-model plants is in general large and complex.
Numerous crops and plant species have different levels of ploidy.
Cultivated sugar cane (S. officinarum) is a good example. It is a
hybrid of different species and it has a complex octoploid genome
with chromosome number ranging from 2n¼ 70 to 140 (Asano
et al., 2004).

Gene expression profiling and understanding gene function
can be approached via several techniques. RNA based system
biology approaches have largely been applied to the classical
model organisms. These so-called transcriptomics approaches
are extremely powerful and highly automated, allowing massive
screening of hundreds of genes simultaneously. However, the
success of those approaches depends greatly on the genomic
progress. Successful techniques like cDNA microarrays, cDNA
amplified fragment length polymorphism (AFLP) and serial
analysis of gene expression (SAGE) are in practice restricted to
model organisms or species that are already characterized to
great extent. The power of those transcript-based techniques
is lost in non-model organisms due to the lack of genomic
information or due to the sequence divergence from a related
model organism. Gene sequences are rarely identical from one
species to another and orthologous genes are usually riddled with
nucleotide substitutions.

An alternative for examining gene expression is studying its
end products, the proteins. Protein sequences are more conserved
making the high-throughput identification of non-model gene
products by comparison to well known orthologous proteins quite
efficient (Liska & Shevchenko, 2003). Moreover, it is important
to recognize that there is a possible discrepancy between the
messenger (transcript) and its final effector (mature protein). As
most biological functions in a cell are executed by proteins rather
than by mRNA, transcript expression profiling does not always
provide pertinent information for the description of a biological
system. Several post-transcriptional and post-translational con-
trol mechanisms such as the translation rate, the half-lives of
mRNAs and proteins, protein modifications and intercellular
protein trafficking, have an important influence on the phenotype
(Mata, Marguerat, & Bahler, 2005; Higashi et al., 2006).

As a matter of fact, also most of the proteome studies are still
performed on model plants (Jorrı́n, Maldonado, & Castillejo,
2007). Insights from the model Arabidopsis will undoubtedly
boost crop science but Arabidopsis is not a crop and will never
feed the world (Adam, 2000). Also rice, as a new model, has
become a cornerstone for crop proteomics (Agrawal & Rakwal,
2006). Nonetheless, there is a great need for proteomics of non-
model plants and crops. Some features and processes are unique
and cannot be approached via a model plant. Woody plants for

example, are perennials with a quite long life cycle and have
special features to offer like survival to harsh winters and wood
formation. Renaut et al. (in press) have applied proteomics to
peach trees to understand the mechanisms triggered by low
temperatures and a short photoperiod. A proteomic study of
wood formation has recently been performed (Gion et al., 2005;
Celedon et al., 2007).

The interests of crop proteomics in general are (i) to get
insight into the different varieties and their performance toward
yield, specific pathogens, abiotic constraints, fruit set, low input
systems, etc., (ii) to develop safe and high quality food, (iii) to
reduce the impact of agriculture on the environment, and (iv) to
fulfill needs for food, feed, and industry. Our intention in this
is not to give a full review of all the proteomic studies carried
out on non-model plant species. A review of the applications of
proteomics to crop species has been published recently (Salekdeh
& Komatsu, 2007). Our goal is rather to discuss the specific
technical challenges for studying non-model plants via pro-
teomic approaches.

B. Proteomics and Technology

A normal proteomics workflow consists of (i) protein extraction,
(ii) protein (peptide) separation and quantification, (iii) protein
identification, and (iv) data integration. An array of approaches
has been developed to address proteomics. There are two main
complementary approaches: the so-called ‘‘gel-based’’ approach
and the ‘‘gel-free’’ approach. Both approaches differ in the way
(poly)peptides are isolated (extracted), separated, and detected
and consequently, each of them covers a typical subset of
proteins. Indeed, the proteome of a cell or tissue at any
specific time point is extremely complex and diverse. Any
available technique is only able to focus on a sub-fraction of the
protein set due to the complex chemical nature of proteins and to
the large dynamic range.

The gel-based approach is the cornerstone of proteome
analysis and has an unequalled resolving power for separation of
complex protein mixtures. Two dimensional gel electrophoresis
(2DE) is a complete methodology, resulting in a qualitative and
quantitative high resolution image of intact proteins that can
provide a good overview of different isoforms and post-
translational modifications. The classical 2DE protocol separates
denatured proteins according to two independent properties:
isoelectric point (pI) (IEF: iso-electric focusing) and molecular
size [more often referred to as molecular weight (MW)]. In order
to separate proteins under denaturing conditions in the first
dimension, proteins are solubilized in the presence of high
concentrations of chaotropes, a reductant and a neutral detergent.
The use of a detergent in conjunction with chaotropes is of
paramount importance and is decisive for the subset of proteins
that can be analyzed.

Unfortunately, 2DE is difficult to automate and the control of
technical variation greatly depends on a scientist’s skills. Since
total automation is the ultimate objective for every high-
throughput method, gel-free approaches were developed. Yates
and colleagues were among the pioneers to explore the use of
liquid chromatography coupled to electrospray ionization
tandem mass spectrometry (LC/MS/MS) in an attempt to realize
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automated high-throughput proteomics (McCormack et al.,
1997; Ducret et al., 1998; Link et al., 1999). Most gel-free
approaches use a bottom-up strategy where proteins are first
digested with a proteolytic enzyme and the obtained complex
peptide mixture is then separated via reversed-phase (RP)
chromatography coupled to a tandem mass spectrometer. The
whole dataset of acquired tandem mass spectra is subsequently
used to search protein databases and to link the individual
peptides to the original proteins. This concept is only successful,
however, when identifying proteins in relatively simple mixtures.
The problem of resolution was anticipated by introducing
multidimensional chromatography. Different concepts such as
Direct Analysis of Large Protein Complexes (DALPC) (Link
et al., 1999) and MUltiDimensional Protein Identification
Technology (MudPit) (Washburn, Wolters, & Yates, 2001) have
been described. Although a great improvement, the resolving
power was still limited, the eluate complexity exceeded the
analytical capacity of most mass spectrometers and the method
was not quantitative (Regnier & Julka, 2006). Aebersold and
colleagues tackled these problems and described an approach for
accurate quantification and identification of individual proteins
using Isotope-Coded Affinity Tags (ICAT) (Gygi et al., 1999).
Further improvements were introduced (Gygi et al., 2002; Zhou
et al., 2002) and many groups adapted the principle of labeling
with stable isotopes, generating different approaches with their
own strengths and weaknesses (Moritz & Meyer, 2003; Regnier
& Julka, 2006). In general, such peptide centred bottom-up
approaches have the disadvantage that both qualitative and
quantitative information on protein isoforms and differential
post-translational modifications are lost.

Cross-species identification is the only option for protein
identification whenever a genome is poorly characterized
(Wilkins & Williams, 1997; Lester & Hubbard, 2002; Mathesius
et al., 2002; Liska & Shevchenko, 2003; Witters et al., 2003;
Samyn et al., 2007). In this approach, proteins are identified by
comparing peptides of the proteins of interest to orthologous
proteins of species that are well characterized. All bottom-up gel-
free strategies are peptide-based separation techniques and have
the disadvantage to lose the connectivity between peptides
derived from the same protein. Haynes and Roberts (2007)
reviewed the possibilities of using a shotgun approach in plants.
They acknowledge that a completely sequenced genome is
essential for a peptide-based separation and that shotgun
proteomics is currently only applicable in model plants. 2DE-
based proteome analysis is at present the most powerful option
for non-model organisms: it is a protein-based separation and
quantification technique where the connectivity between protein
derived peptides is preserved with high confidence allowing to
compare multiple peptides per protein as a diagnostic assembly.

II. PROTEIN SEPARATION AND ANALYSIS

Plant proteome research groups are often confronted with sample
preparation issues and are forced to explore the limits. Many
important technical sample preparation improvements have been
developed by plant research groups (Westermeier, 2006) (see
Table 1). The major limitations of proteome analysis in general

are associated with the heterogeneity of proteins in terms of
physicochemical properties and the huge differences in abun-
dance (Wilkins et al., 1998b). Depending on the origin, an actual
proteome can have a dynamic range of 7–12 orders of magnitude
and only a few orders can be analyzed simultaneously with the
current proteomics platforms (Corthals et al., 2000). Although
classical 2DE is up till now unequalled for resolution and one of
the few general methods able to separate protein isoforms, it is
still not appropriate to analyze hydrophobic proteins (Gorg,
Weiss, & Dunn, 2004). Further limits are associated with the size
of the proteins and the extreme pI of certain proteins. Streaking
and the presence of artifactual spots in the basic region of a 2DE
gel is a well-known problem and has been addressed to some
extent (Herbert et al., 2001; Hoving et al., 2002; Olsson et al.,
2002). The analysis of extreme basic proteins is a problem mainly
due to hydrolysis of acrylamide under extreme basic conditions
(pH> 10). Different optimization steps with respect to pH
engineering and gel composition were introduced to obtain
reproducible basic IPG strips (Gorg et al., 1997). High MW
proteins (>150 kDa) are poorly transferred from the first to
the second dimension and the classical one-dimensional
Laemmli SDS–PAGE system has not enough resolving power
below 10 kDa (Schägger & von Jagow, 1987). Schägger and von
Jagow presented in 1987 a new method. The superiority of this
method, especially for the separation of proteins ranging from
5 to 30 kDa, is mainly based on the introduction of tricine as
trailing ion and the introduction of an additional spacer gel. We
focus here on approaches applied or applicable in plants.

A. Adaptations to the Iso-Electric Focusing-Based
Two-Dimensional Gel Electrophoresis to
Push the Limits

1. Protein Extraction

Most plant tissues are not a ready source for protein extraction
and need specific precautions. The cell wall and the vacuole make
up the majority of the cell mass, with the cytosol representing
only 1–2% of the total cell volume. Subsequently, plant tissues
have a relatively low protein content compared to bacterial or
animal tissues. The cell wall and the vacuole are associated with
numerous substances responsible for irreproducible results such
as proteolytic breakdown, streaking and charge heterogeneity.
Most common interfering substances are phenolic compounds,
proteolytic and oxidative enzymes, terpenes, pigments, organic
acids, ionic species, and carbohydrates.

Most of the agricultural interesting species contain high
levels of interfering compounds and several specific protocols
have been developed (e.g., see Table 1). Banana (Musa spp.) for
example contains extremely high levels of oxidative enzymes
(e.g., polyphenol oxidase) (Gooding, Bird, & Robinson, 2001;
Wuyts, De Waele, & Swennen, 2006) and phenolic compounds
(simple phenols, flavonoids, condensed tannins, lignin), and
high levels of latex and carbohydrates. Phenolic compounds
reversibly combine with proteins by hydrogen bonding and
irreversibly by oxidation followed by covalent condensations
(Loomis & Bataille, 1966), leading to charge heterogeneity and
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TABLE 1. List of articles focusing on the sample preparation for 2DE analysis of some important agricultural species

and their major outcome

(Continued )
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TABLE 1. (Continued)
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streaks in the gels. Carbohydrates and latex interfere with the
electrophoresis and can block gel pores causing precipitation and
extended focusing times, resulting in streaking and loss.

The original 2DE protocol contains only a single sample
preparation step, that is, denaturing extraction of cellular proteins
in a lysis buffer (O’Farrell, 1975). This one step protocol is
restricted to ‘‘clean’’ samples and is rarely useful for plant
material. In the 1980s, much effort has been invested in the
establishment of two dimensional gel electrophoresis sample
preparation methods for plant tissue (Damerval et al., 1988;
Granier, 1988; Meyer et al., 1988). The majority of the plant
protocols introduce a precipitation step to concentrate the
proteins and to separate them from the interfering compounds.
Proteins are usually precipitated by the addition of high
concentrations of salts (Cremer & Vandewalle, 1985), extreme
pH (Wu & Wang, 1984), organic solvents (Hari, 1981; Wessel &
Flugge, 1984; Flengsrud & Kobro, 1989; Schroder & Hasilik,
2006) or a combination of organic solvents and ions (Van Etten,
Freer, & McCune, 1979; Damerval et al., 1986). The protein
precipitation step can be preceded by a denaturing or non-
denaturing extraction step and goes along with one or two
washing steps to remove introduced salt ions and other remaining
interfering substances.

The most commonly used method for extraction of plant
proteins is the trichloroacetic acid (TCA)/acetone precipitation
method (Damerval et al., 1986). TCA is a strong acid (pKa 0.7)
that is soluble in organic solvents. The extreme pH and negative

charge of TCA and the addition of acetone realizes an immediate
denaturation of the protein, along with precipitation, thereby
arresting instantly the activity of proteolytic enzymes (Wu
& Wang, 1984). The main disadvantage of TCA precipitated
proteins is that they are difficult to redissolve (Nandakumar et al.,
2003). Moreover, the extreme low pH might create problems with
alkaline chemical labeling methods used in 2DE (such as Cy
dyes). We evaluated different plant protocols for the extraction of
banana leaf and meristem proteins which resulted in an optimized
phenol-based extraction procedure for small amounts of fresh
weight (e.g., Fig. 1) (Carpentier et al., 2005) and for lyophilized
tissues (Carpentier et al., 2007c). The extraction buffer has been
designed to minimize enzymatic reactions and to remove as much
interfering compounds as possible. It forms the aqueous phase
containing carbohydrates, nucleic acids and cell debris. The
extremely abundant (poly)-phenols (quinones) are eliminated
by DTT to form thio-ethers. The phenol rich phase contains
the proteins and some remaining interfering compounds
such as lipids and pigments. The proteins are separated from
the remaining interfering compounds via ammonium acetate/
methanol induced precipitation. This ‘‘micro’’ phenol protocol is
applicable to a lot of (plant) species. We applied it already
successfully to other eukaryotic non-model species such as apple,
pear, potato (Carpentier et al., 2005), stevia, and Trypanosoma
(unpublished results).

Apart from the optimization of the extraction protocol, also
protein solubilization is a critical factor. The introduction of

FIGURE 1. A representative gel of banana meristem proteins separated via 2DE and visualized via silver

staining (24 cm gel, pI 4–7, 12.5% acrylamide).
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thiourea by Rabilloud et al. (1997), in combination with urea and
the neutral sulfobetaine detergent CHAPS was a noticeable
improvement. Thiourea clearly enhances the chaotropic power
but has to be used in combination with urea due to its poor
solubility. Méchin et al. (2003) also explored the possibilities to
increase the resolving power of 2DE gels for plant proteins. Apart
from the successful chaotrope combination of 2 M thiourea and
7 M urea, their buffer ‘‘R2D2’’ is a combination of two reducing
agents (DTT and TCEP) and two detergents (CHAPS and SB3).

2. Fractionation and Enrichment Tools

Awide variety of fractionation tools are available to cope with the
issue of dynamic range. They are based on electrophoretic or
chromatographic separation or physico-chemical properties to
zoom in at a specific subset of proteins (Canut, Bauer, & Weber,
1999; Lopez, 2000; Righetti et al., 2005a,b).

Proteomes containing extremely abundant proteins like the
‘‘green proteome’’ (Rubisco) and the ‘‘seed proteome’’ (storage
proteins) suffer from this problem considerably. Specific
attempts for removing Rubisco from the proteome have been
made by PEG fractionation (Kim et al., 2001; Xi et al., 2006) and
commercial kits are available using specific antibodies. So far,
publications of this commercial system are only available for
plasma samples (Huang et al., 2005). Espagne et al. (2007) report
that the electrophoretic behavior of the large subunit of Rubisco
can be influenced by changing the composition of the extraction
buffer. This has no direct impact on the dynamic range, but it
enables the characterization of proteins that were previously
masked by Rubisco. Similarly, Hurkman and Tanaka (2004)
exploited the solubility properties of storage proteins, the
dominant proteins in seeds, in different buffers to separate the
abundant proteins from the less abundant ones.

The introduction of an extra dimension prior to isoelectric
focusing allows loading of higher amounts of protein and thus
facilitates the detection of less abundant proteins. A technical
improvement came from the laboratory of A. Görg, who picked
up an old idea of introducing a pre-fractionation step using
neutral beads of the dextran Sephadex (Delincee & Radola, 1970;
Radola, 1975; Gorg et al., 2002). A nice illustration of this
preparative native isoelectric focusing, in combination with
column chromatography and 2D PAGE, is the purification of
glyoxysomal processing protease from watermelon (Helm et al.,
2007).

Plant cells have characteristic subcellular components.
Some components are relatively easy to isolate in a pure form,
whereas others are easily susceptible to contamination from
other compartments (e.g., endomembrane organelles like Golgi
fractions). Lilley and Dupree (2006, 2007) give a recent overview
on plant organelle proteomics. Physico-chemical pre-fractiona-
tion of different subcellular components is a powerful approach
to focus on the subproteomes of the cell (e.g., see Table 2).
Differential and isopycnic centrifugation using sucrose or Percoll
gradients have been traditionally used to separate and purify
plant organelles. Canut, Bauer, and Weber (1999) review the
possibilities to separate plant membranes and organelles
by electromigration techniques. Eubel et al. (2007) recently
optimized the purification of mitochondria and combined

differential centrifugation and Percoll density centrifugation
with free-flow electrophoresis prior to 2DE.

Rolland et al. reviewed techniques to fractionate plant
membrane proteins (Ephritikhine, Ferro, & Rolland, 2004;
Rolland et al., 2006). A technique which is capable to fractionate
selectively hydrophobic proteins is the chloroform/methanol
fractionation. This simple and efficient strategy was developed to
extract the most hydrophobic proteins from spinach (Spinacia
oleracea L.) chloroplast envelope membranes (Joyard et al.,
1982; Seigneurin-Berny et al., 1999; Ferro et al., 2000, 2002). It
enriches hydrophobic proteins that, unfortunately, cannot easily
be resolved by IEF-based 2DE. Santoni, Molloy, and Rabilloud
(2000) review this problem very thoroughly and begin with
the rhetorical question: ‘‘Membrane proteins and proteomics: un
amour impossible?’’ Chloroform/methanol extracted proteins
are frequently analyzed by one-dimensional SDS–PAGE
(Fig. 2). This one-dimensional approach coupled to tandem MS
proved to be most successful to separate and identify proteins
from Arabidopsis (Ferro et al., 2003; Friso et al., 2004;
Marmagne et al., 2004). However, non-model organisms are
dependent on cross-species identification and the resolution of
chloroform/methanol-1DE might not be sufficient. Indeed, after
1DE analysis of chloroform/methanol extracted proteins from
spinach, Ferro et al. (2002) could not assign more than 40% of
the tryptic peptides to a protein, leaving a significant amount
of orphan peptides and, consequently a significant amount of
unidentified proteins. Moreover, the limited resolution puts
severe restrictions on the protein quantification. Therefore
alternative electrophoresis tools have to be evaluated.

B. Non-Model Plants and Membrane Proteins:
Un Amour Impossible?

Membranes play a pivotal role in cell biology and are involved in
signal transduction and stress monitoring, cell–cell communi-
cation, cellular and organellar trafficking and transport, and the
formation of mitochondrial and plastidial electron transfer
chains. From the studies performed on model organisms, it was
estimated that transmembrane proteins represent 20–30% of
the total proteome (Santoni, Molloy, & Rabilloud, 2000). As
mentioned, classical 2D PAGE fails to resolve those proteins.

Some alternative two-dimensional electrophoresis techni-
ques apply different ionic detergents (Hartinger et al., 1996;
Buxbaum, 2003) or different acrylamide concentrations in the
two dimensions (Rais, Karas, & Schagger, 2004). The anomalous
migration of hydrophobic proteins in function of the acrylamide
concentration was the basis for the dSDS-based two-dimensional
gel electrophoresis (Akiyama & Ito, 1985). Proteins with an
anomalous migration are dispersed around a diagonal of proteins
with a normal migration. Rais, Karas, and Schagger (2004)
improved resolution, especially of low MW proteins, by using
Tricine-SDS–PAGE and addition of urea to the first dimension
gel. Further optimization comprised the incorporation of glycerol
and increased Tris concentrations into the gel solutions and the
use of Bicine in stead of Tricine as trailing ion (Williams et al.,
2006). Although dSDS was successfully applied to study highly
hydrophobic proteins in mammalian (Rais, Karas, & Schagger,
2004; Burre et al., 2006) and bacterial (Williams et al., 2006)
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samples, to our knowledge this promising technique was not yet
applied to non-model plants. Penin, Godinot, and Gautheron
(1984) suggested to use the cationic detergent cetyltrimethy-
lammoniumbromide (CTAB) in the first dimensional separation
and also benzyldimethyl-n-hexadecylammonium chloride (16-
BAC) proved to be promising to establish an alternative 2DE
technique (Macfarlane, 1989; Hartinger et al., 1996). Once their
critical micellar concentration is achieved, the cationic deter-
gents CTAB (Eley et al., 1979) and 16-BAC (Macfarlane,
1983) bind at a constant ratio to proteins, analogous to the
well-known anionic detergent SDS. Similar, those cationic
detergents will mask the intrinsic charge of proteins and a
separation based on their molecular size is possible. Further
improvements to the CTAB electrophoresis were introduced by
Buxbaum (2003), though since their first publications the
cationic detergent methods remained largely unnoticed. Only
the last 4 years they started to gain popularity for the analysis of
membrane proteins (Braun et al., 2007). Plant research is still
lagging behind. 16-BAC has been used to identify sucrose-
binding-protein homologs via western blot in isolated Golgi
fractions of pea (Pisum sativum L.) seeds (Wenzel et al., 2005).

The separation range of dSDS and cationic-based 2DE is
still limited because these two-dimensional techniques lack
true orthogonality as both dimensions discriminate on the basis of
molecular size. Though, depending on the complexity of the
protein mixture and on the genome status of the plant species,
these techniques are promising for non-model plants to
characterize hydrophobic proteins.

A technique that did already prove its value to analyze non-
model plant membrane proteins is native electrophoresis.
Moreover, as a result of the use of non-denaturing agents,
information about the organization of protein complexes
or protein–protein interactions is obtained. Clear-Native (or
colorless-native) electrophoresis (CN-PAGE) uses the inherent
negative charge of proteins (with an acidic pI) for separation.
Alternatively, negative charges are provided by adding the
negatively charged protein-binding dye Coomassie Brilliant
Blue G-250 in Blue-Native electrophoresis (BN–PAGE).
Schägger and von Jagow developed these techniques to separate
mitochondrial membrane proteins and complexes from muscle
tissue (Schägger & von Jagow, 1991; Schägger, Cramer, & von
Jagow, 1994). Krause (2006) summarizes the most important

TABLE 2. List of articles focusing on a plant subproteome
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achievements of both techniques to elucidate protein–protein
interactions. BN–PAGE proved to be an elegant tool for studying
the large multienzyme complexes in specific organelles, that
is, mitochondria (oxidative phosphorylation) and chloroplasts
(photosynthetic apparatus). The latter is also the reason why
BN–PAGE became quite popular in plant studies (Eubel,
Braun, & Millar, 2005; Granvogl, Reisinger, & Eichacker,
2006; Reisinger & Eichacker, 2006, 2007). Likewise, protein
complexes of the plasma membrane of Spinacia oleracea leaves
(Kjell et al., 2004) and Dunaliella salina (Katz et al., 2007) have

been successfully resolved by BN–PAGE as well as the
complexes in the peribacteroid membrane from Lotus japanicus
root nodules (Wienkoop & Saalbach, 2003). Remmerie et al.
(submitted) presented protein–protein interactions starting from
whole cell lysates from Nicotiana tabacum BY 2 cells. This
application of BN–PAGE to whole plant cell lysates increases
its possibility as an analytical tool for functional proteomics. A
general overview of stable protein complexes from virtually
all organelles, including plastids, mitochondrion, nucleus,
endoplasmetic reticulum, and plasma membrane, are provided
in one single gel (Fig. 3). With this strategy, not only known
protein complexes could be separated and detected, also possible
protein–protein interactions that had not been observed in plants
before were visualized. Nevertheless, as it is the case with dSDS
and cationic-based 2DE, the separation range of BN/SDS–PAGE
is still limited. Reducing sample complexity of the total cell
extract by prefractionation methods anticipates this problem. The
advantage of this total cell BN/SDS–PAGE is that it may reveal
many complexes in a cellular context and that it can be used to
monitor the kinetics of complexes during perturbation or time-
course experiments. In order to eliminate false positives, the
authenticity of novel interaction partners (not described in model
plants) has to be confirmed by an alternative protein interaction
identification technique such as co-immunoprecipitation (Co-
IP), tagged affinity purification (TAP), two hybrid strategies or
bimolecular fluorescence complementation approaches (Hink,
Bisseling, & Visser, 2002; Figeys, 2003). The latter technique
also enables to localize the subcellular interaction site and
thereby can rule out false positive interactions following
organelle disruption (Hu, Chinenov, & Kerppola, 2002).

C. Explorative Multivariate Analysis: A Useful Tool
for Both Non-Model and Model Organisms

After separation through 2DE several hundreds of individual
protein abundances can be quantified in a cell population or
sample tissue. Data from 2DE analysis are generated through
image analysis software that detects and quantifies the protein
abundances and matches the proteins across the different gels.
Though the matching quality is dependent on the software
algorithm, it is above all determined by the quality and
reproducibility of the gels. As discussed above, non-model
plants are generally not ideal laboratory models and it is therefore
essential to first get insight into the reproducibility of the data.
The typical tests that are applied in proteome research (univariate
statistical tests like the T-test, the Kolmogorov–Smirnov test,
ANOVA or the Kruskal–Wallis test) analyze the individual
variables (i.e., protein spots) one by one and have not been
designed to analyze complex datasets containing multiple
correlated variables. Consequently, they do not give an overview
of the data. Exploratory data analysis approaches a biological
problem from a different perspective and tries to describe
patterns, relationships, trends and outlying data. In contrast to a
univariate approach, it can be used to explore the general inter-
and intra-group variability of the biological samples. It gives
insight into the experimental groups, it displays the interrelation-
ships between the large number of variables and it is helpful to
improve the image analysis and to detect protein mismatches
(Fig. 4).

FIGURE 2. A representative gel of banana meristem hydrophobic

proteins fractionated via chloroform methanol and visualized via

silver staining. A: Chloroform/methanol soluble proteins, (B) Protein

standards, (C) Total amount of proteins, (D) Chloroform/methanol

insoluble proteins. There is a visible fractionation of the proteins and a

bias toward small (hydrophobic) proteins.
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Principal component analysis (PCA) is one of the multi-
variate methods available to perform explorative data analysis. A
comprehensive overview of the use of PCA in statistics is given
by Sharma (1996). Explorative PCA does not put strict require-
ments to the data. The only requirement is that the data set has
to be complete, meaning that missing spot values among the
different samples are not allowed. A missing value in 2DE
proteomics is undoubtedly correlated to gel quality. Apart from
real absent proteins, the causes of missing values might be (i)

faint spots at the detection limit and detected in one gel but not
detected in another; (ii) mismatches probably caused by
distortions in the protein pattern or (iii) spots being absent due
to bad transfer from the first to the second dimension.
The concept of difference gel electrophoresis (DIGE), with its
common internal standard and the co-running approach,
anticipates the missing value problem to some extent but we
have recently shown it remains an issue that must be addressed
(Pedreschi et al., in press). Different studies have described this

FIGURE 3. A representative gel of tobacco BY2 proteins separated via Blue Native electrophoresis. Both

the results are presented: a 1DE gel where protein complexes are separated according to their molecular size

under native conditions and a 2DE gel where the denatured proteins of the individual complexes are also

separated according to their molecular size in the second dimension. A selected number of proteins and

complexes are annotated: (1) both units of the Rubisco binding protein complex, (2) the individual units of

the 20S proteasome, (3) enlarged in an inset the individual silver stained proteins of the F0F1-ATPase

complex, (4) glyceraldehydes phosphate dehydrogenase, (5) nucleoside diphosphate kinase, (6) different

expression forms of triosephosphate isomerase. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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missing value issue in detail (Troyanskaya et al., 2001; Oba et al.,
2003; Jung et al., 2006; Krogh et al., 2007).

The combination of explorative multivariate analysis and
confirmative univariate analysis is a powerful approach. For an
overview of design and analysis issues in proteomics see
Carpentier et al. (2007b). For a recent overview on univariate
proteomics see Karp and Lilley (2007).

III. MASS SPECTROMETRY

A. Mass Spectrometric Analysis of Proteins

The standard approach for the analysis of 2DE separated proteins
involves an enzymatic digestion of the protein in the spot of
interest and extraction of the peptides followed by mass
spectral analysis. The traditional way of analysis involves
peptide mass fingerprint (PMF) analysis, typically performed
by matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) MS since it provides a simple profile by
producing a single peak per peptide. The concept behind PMF
analysis was independently implemented by several groups at
approximately the same time (Henzel et al., 1993; James et al.,
1993; Mann, Hojrup, & Roepstorff, 1993; Pappin, Hojrup, &
Bleasby, 1993; Yates et al., 1993). State-of-the-art equipment

combines excellent sensitivity (subfemtomole region) and
high accuracy (typically better than 10 ppm) with high-
throughput capacity (typically less than 5 sec to generate a
PMF). Unfortunately, PMF data have very little power to identify
proteins from species with a fragmentary genome and protein
repository (non-model organism). Hence, the chance of finding
significant and conserved peptides decreases and PMF fails or
results in false positive hits (Mathesius et al., 2002).

Tandem mass spectrometry (MS/MS) has been used for
decades to obtain structural information of (bio)molecules. For
peptides, MS/MS generates sequence specific information and
the information content of such spectra is thus much higher than
for PMF. Since the introduction of nano-electrospray ionization,
routine use of electronspray ionization (ESI)-MS/MS for the
analysis of 2D-PAGE spots has become feasible (Wilm & Mann,
1994). The formation of multiple charged species (a charac-
teristic of ESI) generates complex spectra for peptide mixtures.
This is usually circumvented by prior separation of the peptides
by capillary or nanoscale liquid chromatography (nano-LC),
which is, moreover, amenable for automated 2D spot analysis
(Gatlin et al., 1998). Unfortunately, separation of peptides prior
to MS/MS is expensive and time consuming. For these reasons,
MALDI is often preferred because of ease of use, speed and the
ability to include MALDI spotting in automated digestion
protocols on liquid handling systems (Shevchenko et al., 1997).
In addition, a MALDI approach has the advantage that it has the

FIGURE 4. PCA analysis. a: Score plot. The big circle is based on the Hotellings T2-test statistic and is used

to detect outlying observables (a¼ 0.95). The three biological replicates of the same experimental group

cluster together, indicating an acceptable intra-group variability (gray ellipse). The different experimental

groups are also separated, indicating a certain inter-group variability. There is a clear difference between

2 and 14 days of treatment. b: The loading plot indicates the correlation between the original variables.

A protein with a high loading score for a specific PC explains an important part of the sample variance. As an

example, we focus on five proteins that, from the loading plot, seem highly correlated (highlighted in B).

Confirmatory differential expression analysis via ANOVA confirms that all five proteins have a very similar

expression pattern over time. Four of them have been identified as isoforms. Reproduced from Carpentier

et al. (2007b), with permission from Humana Press, copyright 2007.
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potential to store temporarily the targets for re-analysis when
certain data are not yet fully explored. Nevertheless both
techniques are useful and complementary.

MALDI instruments were for a long time equipped
with time-of-flight (TOF) analyzers that were poorly amenable
to MS/MS type of experiments (Arnott, Henzel, & Stults,
1998). The development of post-source-decay (PSD) analysis
(Kaufmann et al., 1996; Gevaert et al., 1997) allowed to visualize
spontaneous fragmentation of peptides. Nevertheless, it was
only with the development of hybrid instruments, first Q-TOF
instruments (Shevchenko et al., 2001; Wattenberg et al., 2002),
later TOF/TOF (Medzihradszky et al., 2000; Yergey et al., 2002)
and quadruple ion trap (QIT)/TOF instruments (Martin &
Brancia, 2003) that also MALDI became routinely used for
MS/MS. Recently, the PSD phenomenon was rediscovered as a
tool for peptide sequencing with the introduction of the ‘‘lift’’
concept (Suckau et al., 2003).

The main advantage of protein identification based on
peptide structural information for species with a partially
sequenced genome is that it can be successfully used for the
high-throughput identification of protein orthologs (see further).
Unfortunately, the software tools are developed to search against
a database of known proteins, which might produce low scores
when working with non-model organisms. Recent examples of
proteomic research on non-model plants confirm this statement:
2D-PAGE-based proteomic on strawberry proteins resulted only
in 40% protein identification (Alm et al., 2007), for sunflower a
success rate of 51% was reported (Hajduch et al., 2007). Taking
into account the abundance of the proteins, we could clearly show
a bias toward abundance and found an average success rate of
36% in banana (Carpentier et al., in press). For comparison:
rice proteomics studies report a near 100% identification (Yang
et al., 2007). Depending on the genome status of the species
under investigation and on the degree of homology to a model
organism, de novo sequencing might be essential to obtain
significant sequence information. Grossmann et al. (2007) report
in a case study with spinach, bell pepper and cassava that on
average 11% of their identified proteins could be identified
only via de novo peptide sequencing and sequence similarity
searching.

B. De Novo Sequencing

Sequence reconstruction of an unknown peptide based
solely on the acquired mass data is referred to as de novo peptide
sequencing. Early de novo sequencing involved the use of
chemical microsequencing using Edman chemistry and still
quite recently, it was used complementary to mass spectrometry
to identify proteins from plant origin (Beyer et al., 2002;
Kao et al., 2004; Khan & Komatsu, 2004). This method,
however, is quite expensive in terms of reagent cost and suffers
from a low throughput and sensitivity. Nowadays de novo
sequencing is almost exclusively realized via a MS-based
approach. The challenge of MS-based de novo sequence
determination resides in: (i) finding fragment ion peaks
that correspond to the progressively shorter peptide and
(ii) determining the ion-type of an observed series of a partial
peptide (directionality).

ESI-MS/MS routinely provides more informative MS/MS
spectra of unmodified tryptic peptides than MALDI-TOF
MS/MS. Doubly charged peptide ions tend to fragment more
equally across a given sequence than do singly charged ion
species (Cramer & Corless, 2001; Tabb et al., 2003). Apart from
requiring higher activation energies, singly charged ions, as
preferentially produced during MALDI-ionization, often yield
relatively low quality collision-induced dissociation (CID)
mass spectra which result from a small number of preferred
fragmentation pathways (Qin & Chait, 1995). This leads to
poorer scoring in classical search algorithms, in particular for
cross-species identification. An elegant solution to the problem
of directionality is offered by proteolytic differential isotopic
labeling (Shevchenko et al., 1997). Other chemistries that result
in facilitated de novo sequence analysis by differentiation of N-
and C-terminal fragments have been proposed, involving either
the introduction of a label during cell culturing (Gu et al., 2002;
Shui et al., 2005) or derivatization of peptides after proteolytic
digestion (Brancia et al., 2004; Beardsley, Sharon, & Reilly,
2005). Although de novo sequence determination is simplified,
these methods do not improve the fragmentation reaction or the
detection of fragments.

Based on the emerging knowledge on reactions resulting in
peptide bond cleavage during MS/MS (Wysocki et al., 2000;
Paizs & Suhai, 2005), another set of methods was developed to
improve de novo sequencing. Derivatization of peptides with a
charged moiety influences the fragmentation mechanism by
sequestration of protons (Jones et al., 1994; Dongre et al., 1996).
The research group of Keough, Youngquist, and Lacey (1999)
developed a general procedure for high-sensitivity de novo
peptide sequencing using PSD-MALDI. By adding a permanent
negative charge to the N-terminus of tryptic peptides (in casu a
sulfonic acid group), the C-terminal positive charge is counter-
balanced. As the most basic residue is already protonated, excess
protons, so-called ionizing protons, will be more or less free to
randomly ionize backbone amide groups favoring charge
directed fragmentation of the weakened peptide bonds. Because
fragments that contain the negatively charged N-terminus are not
detected in positive ion mode, only C-terminal y-ions will be
visible and de novo sequence determination simply requires the
calculation of mass differences between consecutive peaks
(Fig. 5). Nonetheless, the preferential fragmentation at specific
residues as described for non-derivatized peptides using ESI
(Tabb et al., 2003, 2004) is preserved (Samyn et al., 2004).

Different reagents have been used for sulfonation and
sulfonated peptides have been sequenced using different types of
mass spectrometers (Bauer et al., 2000; Keough, Lacey, &
Youngquist, 2000; Keough et al., 2000; Keough, Lacey, & Strife,
2001). We published in 2005 an efficient protocol that allows the
extracted tryptic peptides to be N-terminally sulfonated without
any further sample purification (Sergeant et al., 2005). We have
validated this application on proteins isolated from banana
(Musa spp.) (Samyn et al., 2007). Furthermore, the possibility to
discriminate several isoforms showed that apart from cross-
species identification, sulfonation can also be used to identify
biologically important modifications such as single nucleotide
polymorphisms or the differentiation between paralogs and
between variety specific homologs. The characterization of
isoforms benefits undoubtedly from de novo analysis but it is not
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a prerequisite. Laugesen et al. (2007) managed to identify several
tissue and cultivar specific isoforms of peroxidase in barley. The
nearly complete sequence coverage that was necessary to realize
this, was obtained through the analysis of different comple-
mentary mass spectra datasets generated by MALDI-TOF MS
and Q-TOF MS/MS and by searching these spectra against
several databases including specific expressed sequence tag
(EST) libraries.

Novel precision mass spectrometric approaches using
Fourrier Tranform (FT)-MS dramatically improve the perform-
ance for de novo sequencing without prior modifications.
A recent article by Frank et al. (2007) clearly demonstrates the
potential of these systems in off-line ESI-MS and MS/MS
identification. Moreover, the high precision eliminates drasti-
cally the number of candidate peptide sequences that fit a tandem
mass spectrum. The ongoing explosion in the availability of
hybrid quadrupole or linear ion trap FTMS (both Fourrier
Transform-Ion Cyclotron Resonance FT-ICR and Orbitrap)
likely paves the way for wider use to obtain de novo sequences.
Currently, ESI is the main ionization technique in such
configurations. It seems that the high resolution allows both the
separation of the complex multiple charged ions and the easy
determination of the charged state which potentially eliminates
some of the arguments pro MALDI for de novo sequencing.

C. Tools for Terminal Sequencing

For non-model organisms, the identification of the N- or
C-terminal sequences of proteins might give crucial information

enabling the identification of a protein and the discrimination
between isoforms. Furthermore, it has been demonstrated very
recently that this information can be used to study proteolytic
processing events and to verify the correctness of genome
annotations, both in prokaryotic and eukaryotic organisms
(Dormeyer et al., 2007; Gupta et al., 2007).

Using MS, the characterization of the N- or C-terminal
sequence relies first on the selection of the particular terminal
peptide. The use of diagonal chromatography solved this
problem in a gel-free approach for N-terminal peptides (Gevaert
et al., 2003). For C-terminal peptide selection, no such method is
described. Since C-terminal peptides tend to be more selective
for protein identification purposes (Wilkins et al., 1998a), a
number of chemical/isotopic labeling techniques have been
described to isolate them. Those techniques led rarely to the
identification of peptides (Zhou et al., 2004), most likely due to
problems associated with their recovery and the need for larger
sample amounts (Kosaka, Takazawa, & Nakamura, 2000).
Recently, we reported a new approach directed at selective
characterization of the C-terminal sequence (Fig. 6). The MS-
based enzymatic ladder sequencing approach is applied on the
unseparated peptide mixture after chemical cleavage of the
protein by CNBr in gel or in solution (Samyn et al., 2005). Upon
cleavage, Met residues are converted to homoserine lactone (hsl).
During subsequent incubation with CarboxyPeptidases (CPX)
only the original C-terminal fragment is accessible to enzymatic
degradation and forms a ladder (Fig. 6B). Ladder read-out
is performed using a MALDI-TOF/TOF instrument as this
ionization technique produces predominantly ladders of singly
charged ions. In experiments where insufficient C-terminal
residues were removed by CPX, the peptide is further subjected
to MALDI MS/MS fragmentation (Samyn, Sergeant, & Van
Beeumen, 2006). As a proof of principle, the method was used to
investigate the proteolytic processing of procardosin A, an
aspartic proteinase isolated from the artichoke thistle Cynara
cardunculus (Castanheira et al., 2005).

The isolation of the specific terminal fragments can be
avoided by performing the analysis on the intact protein. The
fragmentation of intact proteins with MS, the so-called ‘‘top-
down’’ approach, has been demonstrated on a variety of
instruments (Aebersold & Mann, 2003). The improvements in
FTMS technology and fragmentation technology such as
electron capture dissociation (ECD) or combined InfraRed
MultiPhoton Dissociation (IRMPD) and ECD now allow to
obtain sequence information including information on the
terminal sequences. The method is not yet applicable in
high-throughput proteomics. The recently described matrix
compositions for improved in-source decay of intact proteins in
MALDI may lead to similar applications (Demeure et al., 2007).
However, a major bottleneck for top-down proteomics is the
requirement of separation of intact proteins by liquid chroma-
tography and so it is restricted to relatively simple protein
mixtures.

D. Cross-Species Protein Identification

Since protein identification usually refers to determining from
which gene a certain protein originates, proteins derived from

FIGURE 5. MALDI MS/MS spectra from respectively unsulphonylated

(A) and sulphonylated (B) peptide from Oak. The protein has been

identified as F1-ATP synthase, beta subunit. The closest homolog was

‘‘gi:4388533’’ from Sorghum bicolor. A: The contributing y and b ions

are indicated as well as the immonium ions (Im), the internal fragments

(*) and neutral loss ions (y-178). B: Only y-ions are detected.
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non-sequenced genes can in a strict sense not be ‘‘identified.’’
If the corresponding gene of the investigated organism is
unknown, the aim is rather ‘‘finding the most similar gene in
a closely related organism.’’ Coming from cross-species
protein identification, protein ‘‘identity’’ information cannot be
led back to one single gene locus in a single non-redundant
genomic database, but is dynamically rather associated with a
number of ‘‘most similar’’ database entries. The typical
‘‘identity’’ field should be evaluated together with a statistical
parameter describing the significance and completeness of the
homology.

Conventional protein identification strategies are generally
based on two complementary approaches: one based on the
comparison of the experimentally acquired masses, one based on
the comparison of derived sequences (based on de novo sequenc-
ing), and one that combines both. The search for a homologous hit
instead of an identical hit imposes some specific requirements on
these spectral data analysis approaches. Not all approaches are
equally tolerant toward variations between sequences.

Tandem MS-based identification is more tolerant to
variation. A single mutation completely abolishes the informa-
tion content of a peptide in PMF by shifting its mass. MS/MS

FIGURE 6. A: Schematic representation of the steps involved in the C-terminal sequencing method.

B: Conversion of Met residues to homoserine lactone (hsl) upon cysteine alkylation and cleavage, and

MALDI-TOF/TOF-based ladder read-out of the original C-terminal fragment after incubation with

carboxypeptidases (CPX).
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retains also sequence information of the unmodified residues of
the peptide. Information from multiple peptides derived from a
single protein can be combined to gain additional confidence.
Herein lies the advantage of the two-dimensional gel-based
approach, which allows to conserve the connectivity between all
information derived from multiple peptides originating from
one observed protein. Compared to the more ‘‘simple’’ mass
correlation applied in PMF database searching, identification
from tandem mass spectra requires that some sort of weight needs
to be assigned to peaks, since not all ion types are equally
diagnostic. Additional valuable information lies in the continuity
of mass peaks and their intensity. Widely employed algorithms
take this extra information into account and apply a certain
information prioritization when calculating scores. The correla-
tion between theoretical and experimental data gives an
indication about the degree of homology between the given
protein and the hit sequence. A probability based score then
typically indicates the significance of the hit. This database
dependent strategy is probably the most scalable approach that
allows for a relatively high-throughput analysis of the proteome
of a non-sequenced organism. The approach becomes even more
powerful when additional sequence data sources are taken into
account, such as the growing EST sequence repositories, which
are usually queried in six-frame translations (Mooney & Thelen,
2004; Carpentier et al., 2007a). A number of spectrum-based
identification engines are currently available. Well known is
Mascot (Perkins et al., 1999), which can, with moderate
restrictions, be freely used at www.matrixscience.com. Alter-
native commercial products are SEQUEST (Thermo Fisher
Corp.) and Phenyx (Genebio) and free engines such as
X!Tandem (Craig & Beavis, 2004), VEMS (Matthiesen et al.,
2004) Protein prospector (Clauser, Baker, & Burlingame, 1999),
and profound (Zhang & Chait, 2000).

The success rate of protein identification via conventional
database searching based on the MS/MS information from
multiple peptides derived from a single protein is, due to its
restricted error tolerance, still limited for non-model organisms.
Early software, specifically the Peptide Sequence Tag algorithm,
involved partial user interpretation of mass spectra in order to
derive a minimum of sequence information to be incorporated in
the database searching (Mann & Wilm, 1994; Wilm, Neubauer, &
Mann, 1996). Basically, a peptide sequence tag consists of the
mass of the precursor ion (the peptide mass), a short sequence
fragment directly derived from the spectrum, accompanied by
the masses of its flanking ions. This may yield perfect matches,
but in order to cope with the typical inter-species sequence
variations, more error-tolerant methods were developed. In
the MultiTag method (Sunyaev et al., 2003; Liska et al., 2005)
multiple error-tolerant searches are carried out with the
peptide sequence tags in a loosened query specificity, for
example, by allowing for one or both mass mismatches or an
amino acid substitution. Error-tolerant peptide tag searches tend
to produce enormous lists of potential hits, from which the
MultiTag attempts to extract the most probable hit. This is
done by combining the results from multiple error-tolerant
searches and assigning an E-value to each hit to judge its
confidence level. The recently introduced Paragon algorithm
differs from others in that it models modifications and
substitutions with probabilities, rather than implementing user

controlled settings whether to consider or not to consider them
(Shilov et al., 2007).

Considering the cross-species principle, it is worthwhile to
mention the importance of results validation: false positive and
false negative hit rates should ideally be reduced to zero. The rate
of incorrect identifications can be estimated in a target-decoy
approach, in which the proportion of hits against a decoy database
containing ‘‘nonsense’’ sequences gives a reliable false positive
estimation. When analyzing large datasets, it is common
practice to repeat the homology-based identification search
algorithm using the same database containing the reversed or
randomized sequences. Since no real matches are expected from
this decoy database, the number of positive hits in this search
strategy gives an excellent estimate of the number of potential
false positives. Instead of repeating the search, good arguments
are at hand to perform only a single search using a concatenated
database containing both the target and the decoy database.
Obvious advantages include reduction of the total processing time
and a direct simultaneous competition of decoy and target
sequences for the highest ranking peptide. A significant addi-
tional advantage is that the search report analysis allows
interpreting the relative score and ranking of especially high
scoring false positives and low scoring true positives (Elias &
Gygi, 2007). While these empirical approaches are especially
effective for large datasets, estimation of false positives on
restricted datasets is less accurate and additional statistical
analysis is needed. A means to assess the error of false positive
estimation associated with the size of the database has been
described and a method has been developed to calculate this
uncertainty (Huttlin et al., 2007).

In de novo sequencing, the mass spectrum is interpreted
directly and a corresponding amino acid sequence is deduced
independent of any database. This is often done manually, usually
assisted by a computer program that calculates and displays
differences between spectral peaks that exactly correspond to the
mass of one (or more) amino acid(s). Obviously this approach is
not scalable to high-throughput situations. The derived sequen-
ces are subsequently compared to a database of known sequences
via sequence similarity search engines. There exist different
dedicated sequence similarity search engines such as CIDentify
(Taylor & Johnson, 1997), an MS tailored version of gapped
BLAST (Huang et al., 2001), a MS driven BLAST (Shevchenko
et al., 2001), FASTS (Mackey, Haystead, & Pearson, 2002), MS-
homology (Clauser et al., 1999), and Open Sea (Searle et al.,
2004). Some have already successfully been applied on different
non-model plants (Castro et al., 2005; Jorge et al., 2005;
Grossmann et al., 2007; Samyn et al., 2007; Waridel et al., 2007).

The automatic de novo sequencing of not-simplified spectra
constitutes a major computational challenge, although consistent
progress has been made over the years. The first attempts towards
automated de novo sequencing considered all theoretically
possible sequences that correspond to the parent ion mass, and
compared their theoretical spectra with the experimental
spectrum (Sakurai et al., 1984). Due to the number of possible
combinations this approach is computationally too demanding. A
different approach starts with the finding of short matching
sequences, which are then gradually extended as long as the
match is conserved (Johnson & Biemann, 1989). Though, this
method may lead to false negatives when certain fragment ions
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are missing. Most current approaches are based on the graph
theory, a common data representation method in computer
sciences, for example, Fast (Bartels, 1990), SeqMS (Fernandez-
De-Cossio et al., 1998), Lutefisk (Taylor & Johnson, 2001),
SHERENGA (Dancik et al., 1999), PepNovo (Frank & Pevzner,
2005). Some non-graph theoretic approaches have been intro-
duced more recently, for example, Peaks (Ma et al., 2003) and
ByOnic (Bern, Cai, & Goldberg, 2007). None of the current
techniques readily converts tandem mass spectra into sequences,
but these algorithms greatly assist in reducing the number of
verifiable options. For more background and comparisons of de
novo sequencing algorithms the reader is referred to several
reviews (Pevtsov et al., 2006; Xu & Ma, 2006; Colinge &
Bennett, 2007).

E. Data Integration

1. Reference Databases and Spectral Libraries

It was recognized early that identifications obtained in previous
proteome studies remain of great value. A first effort to make
previous identifications useful for future studies was the
development of the federated 2D databases http://www.expa-
sy.ch/ch2d/ (Appel et al., 1996). This offered researchers a rapid
way to locate a certain protein on an experimental ‘‘reference’’
2D map and made it possible to derive the identity of an unknown
spot by matching it with a corresponding spot on a reference map.
Proticdb is a web-based application of the UMR of Génétique
Végétale du Moulon to store, track, query, and compare plant
proteome data (Ferry-Dumazet et al., 2005) and is exclusively
dedicated to plants. We have previously generated reference
maps for tobacco BY-2 cells and banana meristems (Laukens
et al., 2004; Carpentier et al., 2007a). Such a reference database is
most useful in serving as rapid ‘‘pre-analysis’’ information, but
another potential application, in particular for non-sequenced
organisms, lies in the reverse approach. Given the fact that pI and
molecular size of the primary structure is reasonably well
conserved between isoforms and orthologs these federated
repositories can be used in guiding experiments. When a
researcher is interested in a certain protein for PTM analysis or
other purposes, a reference database of the particular or related
species could point to the spots on a matched map which could
then be picked for further analyses.

Gel images and identification results are typical features
included in proteome-databases, but even more potential lies in
the inclusion of spectral data. Incomplete or insufficiently
informative spectra can lead to positive identification when first
matched with previously acquired spectra in a database (Frewen
et al., 2006). During the last few years several initiatives were
launched to develop spectrum databases or spectral libraries. Pre-
processed experimental spectra are usually combined into
synthetic reference spectra using some kind of averaging
technique (Craig, Cortens, & Beavis, 2005; Craig et al., 2006;
Liu et al., 2007). Parallel, the need has arisen to have methods to
compare spectra with each other, or to search a spectral library
with a freshly acquired un-interpreted spectrum.

The integration of proteome data in the case of a non-model
species involves some specific concerns. Regular re-annotation
of proteins by re-analysis of their digest MS-spectra against new
database versions can lead to further improvement of the existing
annotation database. Spectral libraries are potentially valuable
to assist with the identification of incomplete spectra. The
connectivity between spectra from multiple peptides originating
from a single gel spot may also facilitate future LC-
based MudPIT approaches, even for incompletely sequenced
organisms.

An important function of integration efforts is maintaining,
promoting and developing the internal relationships between
different types of data. In particular for organisms dependent on
cross-species identification, the connectivity between multiple
peptides originating from a single protein spot is an important
characteristic. Often the knowledge of a previous analysis of a
certain sample or spot can be of great value for repeated analysis
and results interpretation. The pProRep tool enables such a
gel-centric data integration into a relational database. It offers a
web-interface to which users can import, analyze, visualize, and
export experimental data sets (Laukens et al., 2006). Some
advanced query functions allow for novel ways to search the
database, for example with experimental peak lists. Query results
and their internal relationships can be visualized for example on
the spot level, and labeled. The application can be used as an
‘‘analytical workbench’’ for experimental proteome data, and
will be further developed to offer more advanced data mining
functions. Experimental data sets are growing and can be of great
value for the future interpretation of new experiments if the right
tools are available. In addition these analytical and integrative
functions, pProRep also intends to serve the purpose of online
data sharing.

It can be expected that this need for proper integration and
electronic sharing of experimental data will receive momentum,
as minimal reporting requirements are established under the
guidance of the leading proteome journals and the Hupo
Standards Initiative (http://psidev.info/).

2. Cross-Species and Functional Annotation

The current possibilities to acquire ‘‘omics’’-data imposes new
challenges to the interpretation, clustering, comparison, and
functional annotation of biological data. This includes integra-
tion with biological knowledge databases such as the Gene
Ontology Database, protein interaction databases, pathway
databases, as well as mining the biological literature. A number
of automated tools to accomplish this task are now becoming
available.

The annotation of genes from non-model organisms depends
totally on what is known from the model organisms. The
attributes known from the retrieved homologous hit, such as
functions, molecular interactions and localization, can then,
though carefully, be projected onto the organism and process
under investigation and be interpreted in the context of the study.
The lack of annotated data complicates this task, but does not
preclude. To a certain extent annotation data can be successfully
transferred over the species-border if the (sequence) similarity
criteria are carefully selected (Yu et al., 2004). Further maturation
of this field can be expected in the near future.
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IV. BANANAS: EPILOGUE

This closing section focuses shortly on bananas and plantains as
an example of a non-model crop with a booming proteome
analysis. With an annual production of approximately 100 million
tons, banana and plantain are one of the most important food
commodities after rice, wheat and maize (FAOstat, 2007).
Bananas and plantains are cultivated in more than 120 countries
and are a staple food source of 400 million people, as only 13%
are exported. The internationally-traded banana varieties belong
to the ‘‘Cavendish’’ group. These very similar varieties are
grown in monocultures which favor pest and disease develop-
ment. A disease outbreak can wipe out the entire crop. The
dessert banana ‘‘Gros Michel’’ was such a case when it was
destroyed by the Panama disease (or Fusarium wilt) and as such
the export industry completely collapsed in the 1950–1960s.
‘‘Gros Michel’’ was then replaced by the current ‘‘Cavendish’’
varieties which are nowadays threatened again by virulent
diseases, abiotic stresses, etc. (Heslop-Harrison & Schwarzacher,
2007).

Despite its importance, both as a food source and as a
commercial crop, the genome of banana is poorly characterized.
The A genome is estimated at 638 Mb (11 chromosomes) and the
B genome at 529 Mb (11 chromosomes) (Lysak et al., 1999). The
Global Musa Genome Consortium (http://www.musagenomic-
s.org/) currently reports that only 0.4% of the A genome and 0.1%
of the B-genome is sequenced. Large scale gene expression
profiling based on transcripts is feasible but remains quite
challenging (Coemans et al., 2005) and thus a proteomics
approach is more appropriate (Carpentier et al., in press). In order
to start a proteome approach on banana, we focussed first on the
specific problems of protein extraction of this extremely
recalcitrant plant and established a powerful protein extraction
for 2DE separation (Carpentier et al., 2005). Subsequently we
focussed on data analysis and the possibilities of statistical
analysis (Carpentier et al., 2007b) and on the specific problems
associated with protein identification. In order to maximize the
identification rate, we combined different ways of database
searching: high-throughput database dependent searching (cross
species and EST-based) (Carpentier et al., 2007a) and database
independent de novo sequencing combined with error tolerant
BLAST searching (Samyn et al., 2007). The added value of such
a strategy is that the ease and high-throughput of database
dependent searching is complemented by the more powerful de
novo sequencing and error tolerant BLAST searching: proteins
that have not been identified successfully via database dependent
searching are subsequently subjected to de novo sequencing.
Currently we are exploring alternative electrophoresis systems to
tackle the membrane proteome and are creating species and
tissue specific EST libraries. Results are expected to improve the
exploitation of the International Musa Germplasm Collection
which is currently stored at the Laboratory of Tropical Crop
Improvement (K.U.Leuven, Belgium), under the auspices of
Bioversity International.

The optimized workflow for a non-model organism
comprises (i) the investment in a powerful protein extraction
method capable to deal with the interfering compounds, (ii) the
combination of different complementary protein fractionation,
separation and quantification techniques to maximize the

resolution and to cover the proteome as good as possible, and
(iii) the usage of different complementary MS techniques and
error tolerant database searches.

From a prospective view the ideal workflow for a non-model
organism should bundle the spectral data from 2DE experiments
into libraries. The connectivity between spectra from multiple
peptides originating from a single gel spot may facilitate future
LC-based approaches.
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