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Glossary

2DE: two-dimensional electrophoresis; gel-based separation of proteins by the

orthogonal properties of isoelectric point (see isoelectric focusing) and

molecular weight.

Isoelectric focusing: first dimension of separation in 2DE in which proteins are

separated by their isoelectric point (pI); proteins are typically separated

electrophoretically in gels containing an immobilized pH gradient (IPG).

LC-MS/MS: liquid chromatography-mass spectrometry/mass spectrometry,

also called tandem mass spectrometry. A protein is hydrolyzed into peptides,

which are separated by liquid chromatography, passed through an initial mass

spectrometer to assess abundance, and subsequently fragmented via collision

induced dissociation (CID). Fragment masses are assessed in the second mass

spectrometer and used to reconstruct the original peptide sequence.

MALDI-TOF MS: matrix-assisted laser desorption/ionization time-of-flight mass

spectrometry; one of the most common types of mass spectrometry used to

perform PMF (see peptide mass fingerprinting). Either whole or fragmented

proteins are ionized by a laser in the presence of crystallized matrix and are

subsequently subjected to an electrical field to measure the amount of time

that it takes for the particles to travel a known distance to correlate the time-of-

flight of a particle with its mass-to-charge ratio.

Peptide mass fingerprinting (PMF): method of identifying unknown proteins by

hydrolyzing them with specific proteases (e.g. trypsin) to generate peptides

whose masses are determined by mass spectrometry (usually MALDI-TOF).

Identification is achieved through comparison with theoretical peptide masses

from a protein sequence database.

Proteome: global set of proteins expressed in a cell at a given time and

biological state.

SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis;

electrophoretic technique used to separate proteins according to their

molecular weight.

Subproteome: proteome of a defined subset of an organism, primarily specific

organelles.

Secretome: proteome of the secreted proteins and the cellular machinery

involved in their secretion.

Transcriptome: set of transcripts (i.e. mRNAs) expressed in a cell’s particular
Proteomic analysis, defined here as the global assess-
ment of cellular proteins expressed in a particular bio-
logical state, is a powerful tool that can provide a
systematic understanding of events at the molecular
level. Proteomic studies of filamentous fungi have only
recently begun to appear in the literature, despite the
prevalence of these organisms in the biotechnology
industry, and their importance as both human and plant
pathogens. Here, we review recent publications that
have used a proteomic approach to develop a better
understanding of filamentous fungi, highlighting sample
preparation methods and whole-cell cytoplasmic pro-
teomics, as well as subproteomics of cell envelope,
mitochondrial and secreted proteins.

Introduction
Filamentous fungi comprise an important class of organ-
isms of significant commercial relevance, even though they
typically receive less attention than their lower eukaryotic
relatives, such as yeasts. For example, in the biotechnology
industry, filamentous fungi are used to produce a wide
variety of products ranging from human therapeutics
(e.g. antibacterial and antifungal agents) to specialty
chemicals (e.g. commercial enzymes, organic acids), which
together represent billions of dollars in annual sales [1].
Just one class of compounds, the cholesterol-lowering sta-
tins, represents a market of almost US$15 billion per year
in the USA [2,3]. Filamentous fungi are also notorious
pathogens in both humans [4,5] and plants [6], and
recently have received much public interest in the USA
and in Denmark owing, respectively, to their prevalent
infestation in buildings affected by Hurricane Katrina [7],
and in schools affected by repeated flooding, raising health
concerns for both adults and school children [8,9].

The importance of studying fungi can also be
highlighted by the increasing number of genomes that
have been sequenced. To date, 18 different species have
been sequenced and annotated: Aspergillus clavatus [10],
A. flavus [11,12], A. fumigatus [11,13], A. nidulans [13],
A. niger [14], A. oryzae [12,13,15], A. terreus [10], Botrytis
cinerea [16],Chaetomiumglobosum [16],Coprinus cinereus
[16], Fusarium graminearum [16], F. verticillioides [17],
Magnaporthe grisea [18], Neurospora crassa [19,20], Pha-
nerochaete chrysosporium [21], Rhizopus oryzae [16,22],
Sclerotinia sclerotiorum [16], and Stagonospora nodorum
[16] (for reviews of fungal genomes, see [23–25] and for
other on-going projects, see http://www.broad.mit.edu/
annotation/fgi/). Yet despite their importance and the
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availability of sequenced genomes, there have been rela-
tively few (although increasing) studies (Figure 1) on
filamentous fungi compared with their simpler relatives,
such as the model yeast Saccharomyces cerevisiae or the
pathogenCandida albicans. This is true for both transcrip-
tomic and proteomic analyses. We note that protein-level
analysis is particularly relevant in eukaryotic systems,
such as fungi because it allows location-specific analysis
(i.e. subproteome, see Glossary), as well as the study of
post-translational modifications (e.g. phosphorylation, gly-
cosylation), which might impact on phenomena such as
signal transduction [26].

In two previous reviews [27,28], it was noted that efforts
toward post-genomic studies were just beginning in fila-
mentous fungi, and to harness their potential as hosts for
recombinant protein expression would require an increase
in both transcript and proteomic related research. The
earliest post-genomic studies of filamentous fungi were
published at the beginning of the twenty-first century by
Lim et al. [29] on Trichoderma reesei cell envelope proteins
physiological state; assessed via microarrays; mRNA complement of the
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Figure 1. The number of new articles (including reviews) that have appeared in

each of the past five years related to filamentous fungal proteomics. *Represents a

projection as of April 2007.
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and by Bruneau et al. [30] on A. fumigatus glycosylpho-
sphatidylinositol-anchored proteins. Since then, a signifi-
cant number of post-genomic studies have been published
([31], Table 1), and we believe the filamentous fungal
research community has now moved beyond its initial
stage into a posture of active research. Several reviews
have addressed post-genomic fungal studies from a general
perspective [27,28,31–37], and a review of transcript
analysis studies has just appeared [31]. Our goal here is
to complement these previous publications and provide a
survey of recent proteomic studies in filamentous fungi.
Specifically, we report on publications from the past five
Table 1. List of filamentous fungal proteomics papers

Category or species Refs

Review [27,28,32–37]

Aspergilli

Sample preparation [41,44,50,65]

Intracellular proteomics [40,43,50,57,58]

Membrane subproteomics [30,61]

Secretomics [65–68]

Botrytis cinerea

Intracellular proteomics [51,59]

Neurospora crassa

Mitochondrial subproteomics [62]

Penicillium expansum

Secretomics [75]

Phanerochaete chrysosporium

Intracellular proteomics [46]

Membrane subproteomics [46]

Mitochondrial subproteomics [48]

Secretomics [72–74]

Pleurotus sapidus

Secretomics [71]

Sclerotinia sclerotiorum

Secretomics [49]

Terebralia palustris

Sample preparation [45]

Trichoderma

Sample preparation [53]

Intracellular proteomics [54]

Membrane subproteomics [29]

Mitochondrial subproteomics [42]

Proteasome subproteomics [63]

Secretomics [47,69,70]

www.sciencedirect.com
years that relate to whole-cell cytoplasmic proteomics,
subproteomics of cell envelope proteins and of mitochon-
drial proteins, and the secretome of filamentous fungi. We
have excluded studies of dimorphic fungi (e.g. C. albicans,
Ustilago maydis) and yeast (for a recent review on S.
cerevisiae proteomics, see [38]) to further narrow our scope.

Cell wall lysis and sample preparation
Because filamentous fungi have an exceptionally strong
cell wall [39], several early studies were devoted to over-
coming this challenge by providing an effective means of
cell lysis for adequate release of intracellular proteins. For
example, several researchers [40–43] used mechanical
lysis via glass beads to liberate cytoplasmic protein, and
this approach has been more efficient than either chemical
or enzymatic extraction methods [44]. In an alternative
approach, Shimizu and Wariishi [45] bypassed the
difficulty of lysing the fungal cell wall by generating pro-
toplasts of Tyromyces palustris. Two-dimensional electro-
phoresis (2DE) patterns from protoplasts were better
visualized than proteins obtained from disrupting the
fungal cell wall using SDS extraction. Since then, however,
the most widely used method of extraction seems to be
grinding in liquid nitrogen using a mortar and pestle
[45–51].

Once the cells are lysed, the protein solution is often
purified via trichloroacetic acid (TCA) precipitation to
remove contaminants that can be problematic during iso-
electric focusing [52]. Although effective in cleaning the
sample, TCA-treatment makes subsequent protein solu-
bilization for isoelectric focusing difficult. To circumvent
this challenge, Nandakumar et al. [41] developed a time-
saving protocol involving a brief treatment with sodium
hydroxide to improve solubilization of TCA-precipitated
proteins. More recently, Kniemeyer et al. [50] further
optimized precipitate resolubilization with zwitterionic
detergents. Others have reported an improvement by
using a phosphate buffer solubilization before the precipi-
tation [51], as well as the use of acidic extraction solution to
reduce streaking of fungal samples caused by their cell wall
[53].

Intracellular proteomics
One of the earliest intracellular filamentous fungal pro-
teomic studies was performed by Hernández-Macedo et al.
[46] on the wood-degrading fungi P. chrysosporium and
Lentinula edodes. Using 2DE to conduct a differential
comparison of cytoplasmic protein expression patterns in
the presence or absence of iron, they visualized 21 proteins
related to iron uptake in these ligninolytic fungi. However,
the subsequent identification of these proteins was
deficient and therefore Grinyer et al. [54] provided further
progress in fungal proteomics by using mass spectrometry
(both MALDI-TOF and LC-MS/MS) to identify proteins
from T. harzianum whole-cell protein extract. Of the hun-
dreds of proteins resolved in a single gel, the researchers
identified 25 (out of 96 attempted) to provide an initial
proteome map. Although this identification approach has
been commonly used in proteomic studies of other organ-
isms [55], Grinyer et al. were the first to use it to study
filamentous fungi. Building on this established approach,
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the researchers further studied the differential whole-cell
proteome, as well as the secretome (proteome of secreted
proteins), of T. atroviride grown in media containing either
Rhizoctonia solani cell walls or glucose [47]. The research-
ers identified 24 protein spots, which contained both pre-
viously known cell wall-degrading enzymes and previously
uncharacterized novel proteases.

Several proteomic studies have begun to appear in the
literature for the genus Aspergillus. Petter Melin and
colleagues provided the first protein identifications for
the A. nidulans proteome [40,43]: their more recent report
is particularly interesting. They co-cultivated the fungus
with a lactic acid-producing bacteria, and showed specific
changes in protein expression levels that correlated with
the morphological changes caused by the co-cultivation.
Two other reports characterized the proteome of A. fumi-
gatus, perhaps the most prominent filamentous fungal
human pathogen [56]. The first A. fumigatus proteome
map was provided by Kniemeyer et al. [50] who conducted
a systematic characterization of carbon catabolite repres-
sion by comparing protein expression patterns during
growth on two different carbon sources. For growth on
ethanol, 52 proteins were identified, for which many key
gluconeogenesis, glyoxylate cycle, and ethanol degradation
enzymes were found to be up-regulated. Later, Carberry
et al. [57] added 28 additional protein identifications to the
A. fumigatus proteomemap, showing for the first time that
the eukaryotic elongation factor 1Bg protein exhibits
glutathione transferase activity. This latter example illus-
trates that proteomic analysis not only provides a systema-
tic perspective on fungal physiology, but also that it serves
as a hypotheses-generating tool. We have observed a
similar benefit when we recently updated the A. nidulans
proteomemap with identification of 30 additional proteins,
including five that were not characterized and that are
involved in osmoadaptation [58].

Proteomic analysis is also being used to develop sys-
tematic understanding of virulence factors in pathogenic
fungi. For example, Fernández-Acero et al. [51], who pro-
vided the first proteome 2DEmap ofBotrytis cinerea, found
that many of the identified proteins were isoforms of
malate dehydrogenase and glyceraldehyde-3-phosphate
dehydrogenase, correlating them to the phytopathogenic
nature of B. cinerea. The authors followed up their first
study by identifying pathogenicity factors and therapeutic
targets for B. cinerea [59]. Similarly, the proteome of
another phytopathogenic fungus, S. sclerotiorum, was
recently mapped [49] and provided clues that a-L-arabino-
furanosidase might be involved in the pathogenicity of the
fungus.

Proteomic analysis in fungi is also providing insight
related to systematic metabolic flux changes. Shimizu
et al. [48] resolved 1100 intracellular and 300 mitochon-
drial proteins of P. chrysosporium in 2D gels and observed
that 47 intracellular, and 10 mitochondrial proteins were
differentially expressed when grown in the presence of
vanillin. Their study not only identified key enzymes
involved in vanillin metabolism, but also showed P. chry-
sosporium’s metabolic shift from glyoxylate cycle to the
tricarboxylic acid cycle. Similarly, our work [58] showed
that A. nidulans shifts metabolic flux toward glycerol
www.sciencedirect.com
biosynthesis during osmoadaptation, and has reduced
expression of pathways that are downstream to the tricar-
boxylic acid cycle (e.g. lysine biosynthesis), and potentially
has an increased protein turnover, as evidenced by
increased expression of heat shock proteins and Shp1-like
protein degradation protein. These studies demonstrate
the capacity of proteomics to characterize systematically
the various biochemical pathways that might be involved
in adaptation to changing environments.

Subproteomics
We use the term ‘subproteomics’ to describe proteomic
analysis of a defined subset of an organism’s protein
complement, primarily specific organelles [60]. Hernán-
dez-Macedo et al. [46] described procedures for plasma
membrane and outer membrane protein extraction of
P. chrysosporium and L. edodes, although the proteins
were only visualized in one-dimensional SDS–PAGE
rather than 2DE. Later, Asif et al. [61] provided the first
subproteome map of A. fumigatus surface proteins, with
the goal of finding potential therapeutic targets against
this human pathogen. It is likely that future cell wall
and membrane subproteomics studies will provide a
systematic understanding of proteins involved in both
protein secretion and in cell-to-cell interaction during
pathogenesis.

Mitochondria have also received attention. Grinyer
et al. [42] were the first to publish a mitochondrial sub-
proteome, describing a successful sample preparation pro-
tocol and mitochondrial proteome map for T. harzianum.
Based on protein databases of N. crassa, A. nidulans, A.
oryzae,S. cerevisiae, andSchizosaccharomyces pombe, they
identified 25 uniquemitochondrial proteins involved in the
tricarboxylic acid cycle, chaperones, protein-binding and
transport proteins, as well as mitochondrial integral mem-
brane proteins. More recently, Schmitt et al. [62] reported
on proteomic analysis of the mitochondrial outer mem-
brane of N. crassa. The researchers employed LC-MS/MS
and MALDI-TOF from 1-D SDS–PAGE to circumvent the
difficulty of solubilizing and focusing hydrophobic mito-
chondrial membrane proteins for 2DE. They were able to
identify 30 proteins, of which some are known to be
involved in transport (import machinery and transporters)
and overall mitochondrial morphology. Most recently,
Grinyer et al. [63] separated and identified 13 of the 14
subunits of theT. reesei 20S proteasome, providing the first
filamentous fungal proteasome proteomics.

These reports imply that systematic, whole- and even
sub-organelle proteomics is possible once adequate orga-
nelle separation protocols are in place. The advantage of a
subproteomic approach is that it enables the protein
expression to be localized in a particular organelle, thereby
providing additional insight into the function of the protein
in the given physiological state of the cell.

Secretome
The secretome has been defined as the combination of
native secreted proteins and the cellular machinery
involved in their secretion [64]. Secretome-related studies
are particularly relevant in understanding filamentous
fungi becausemany fungi secrete a vast number of proteins
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to accommodate their saprotrophic lifestyle. In light of this,
it has been said that unlike animals, ‘fungi digest their food
and [then] ‘eat’ it’ [7], illustrating the large number of
extracellular hydrolytic enzymes necessary to digest a
plethora of potential substrates. Many of these proteins
are of special interest in the study of pathogens [49,57,59]
or during production of recombinant proteins in the bio-
technology industry [28]. As a result, a significant number
of publications have described the fungal secretome. This
might also be owing to the fact that secretome sample
preparation is much faster and simpler than extraction
and preparation of intracellular proteins.

Wilson Francisco and colleagues provided pioneering
contributions to this field, establishing a sample prep-
aration protocol for the fungal secretome [65]. Using this
protocol, they studied A. flavus and identified 22 secreted
proteins involved in rutin degradation [66]. This helped
develop an initial understanding of the enzymes involved
in degradation of secondary metabolites for cellular con-
sumption. They continued this work using LC-MS/MS to
identify an additional 51 secreted proteins, of which 18
were found to be in the rutin degradation pathway [67].
Oda et al. [68] studied the secretome of A. oryzae and
identified 29 extracellular proteins when fungi were grown
in either liquid or solid-state culture. Several of the ident-
ified proteins were sequestered in cell walls during liquid
culture but passed through the cell wall during solid-state
growth.

Suárez et al. [69] studied the secretome of T. harzianum
grown using either chitin (a key cell wall component) or the
actual cell walls of other fungi (R. solani, B. cinerea, or
Pythium ultimum) as a nutrient source. For each different
substrate, they found significant differences in 2DE maps
of extracellular proteins. However, despite these differ-
ences, the most abundant protein under all conditions
was a novel aspartic protease (P6281), which showed
strong homology with polyporopepsin from Irpex lacteus.
This led to speculation that this protein has a fundamental
role in the parasitic activity of Trichoderma spp. Similarly,
Marra et al. [70] provided a novel proteomic study of
three-way interaction between T. atroviride, R. solani,
B. cinerea. They identified numerous proteins involved in
multiple-species cross-talk, providing insight to the host-
pathogen interaction in nature, as well as to proteins that
are potentially specific to pathogenesis. A similar
approach was used by Zorn et al. [71], in which the
secretome of Pleurotus sapidus grown on peanut shells
was observed. The researchers found that most secreted
proteins had acidic isoelectric points (pIs) and were var-
ious metallopeptidases and serine proteases. In an
alternative, completely non-gel based approach, Dan Cul-
len and colleagues provided a comprehensive identifi-
cation of the P. chrysosporium secretome using a
combination of shotgun LC-MS/MS and database predic-
tion [72,73] (see also review in [74]).

Concluding remarks
It is our opinion that the field of fungal proteomics is
rapidly entering an ‘exponential’ phase as evidenced by
an apparent increase in the rate of relevant publications
(Figure 1). This observation is supported by an increased
www.sciencedirect.com
number of presentations that appeared at recent confer-
ences on both sides of the Atlantic, such as the 24th Fungal
Genetics Conference at Asilomar (2007), the 8th European
Conference on Fungal Genetics at Vienna (2006), and the
Second International Fungal Proteomics Symposium at
Baltimore (2006). The increasing number of available
genomes of filamentous fungi will also aid this accelera-
tion of publications and we eagerly anticipate many pub-
lications on fungal proteomics that will emerge in the near
future.
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