Personal tools
You are here: Home / Research / Biological Chemistry / Microbial & Enzyme Technology

Lígia O. Martins Lab

Microbial-&-Enzyme-Technology.jpg

The research activities are in the field of Molecular Biotechnology at the interface of protein science and protein technology, and involve the selection, structure-function characterization, and engineering of promising enzymes for environmental and industrial applications.
 

 

Lígia O. Martins
Professor Auxiliar
PhD 1994 in Biotechnology , UTL-IST

Phone (+351) 214469534
Extension 1534
lmartins@itqb.unl.pt

logos_green_logo_200px.jpg

 

Research Interests


Biocatalysis is considered a key component for the development of a sustainable bio-economy and the use of enzymes as biocatalysts has been constantly growing in a range of industries. Enzymes are sustainable, selective and efficient, and offer a variety of benefits such as cleaner reactions and increased specificity, with lower energy requirements. In recent years we have successfully established a research program focused on the investigation of bacterial oxidoreductases, laccases and metallo-oxidases, from the family of multicopper oxidases, NAD(P)H:FMN-dependent quinone (azo dye) reductases, DyP-type peroxidases, a new microbial family of heme peroxidases, and recently, a FAD-dependent pyranose 2-oxidase, with potential application in the bioremediation and biorefinery fields. The mechanistic and structural properties of the enzymes were thoroughly investigated in order to understand the basic determinants of their catalytic and stability properties. Multidisciplinary investigations demonstrate the efficiency of these enzymes for the degradation of synthetic and natural aromatic substrates, such as dyes or lignin model compounds, as well as for the synthesis of aromatic added-value compounds. Directed evolution methodologies were optimized for the improvement of enzyme´s performance and robustness allowing simultaneously to get insight over structure-function relationships. The final goal is the design of biological systems for new functions, a key tenet of synthetic biology, by exploring the catalytic properties of multiple and improved enzymes and cells in the degradation of plant biomass and production of industrially relevant compounds, contributing for the creation of a circular economy and for the smart and efficient use of resources.  


Group Members

  • Vânia Brissos, Post-doc

  • Sónia Mendes, Post-doc

  • Zhenghia Chen, Invited Scientist

  • Ana Fernandes, PhD student (with Beatriz Royo, ITQB)

  • Vera Guerra, PhD student (with A Veríssimo, UC)

  • Diogo Silva, Graduate student

  • Diana Santos, Master student

  • Patrícia Reis, Graduate student
     

Selected Publications

  1. Mendes, S, Banha, C, Madeira, J, Santos, D, Miranda, V, Manzanera, M Ventura, MR, van Berkel, W JH, Martins, LO. 2016. Characterization of a bacterial Pyranose 2-Oxidase from Arthrobacter siccitolerans J Mol Catalys. B, Enzymatic DOI 10.1016/j.molcatb.2016.11.005
  2. Brissos, V, Ferreira, M, Grass, G and Martins, LO. 2015. Turning a hyperthermostable metallo-oxidase into a laccase by directed evolution. ACS Catalysis 5: 4932-4941
  3. Mendes, S, Catarino, T, Silveira, C, Todorovic, S and Martins, LO. 2015. Catalytic mechanism of BsDyP an A-type dye-decolourising peroxidase: neither aspartate nor arginine is individually essential for peroxidase activity. Cat. Sci. Technol. 5: 5196-5207.


Laboratory's Website

For further information please visit the laboratory's website

  

Tecnologia Microbiana e Enzimática (PT)

O nosso laboratório estuda microrganismos e enzimas com potencial para aplicações biotecnológicas (ambientais e industriais). Estudamos a correlação entre a estrutura de enzimas, nomeadamente lacases bacterianas, com a sua função. Para isso são utilizadas várias metodologias que envolvem técnicas de Microbiologia, Biologia Molecular, Bioquímica e Biofísica. Também temos colaborações estabelecidas com outros grupos o que nos permite realizar uma caracterização o mais completa possível das enzimas que estudamos. Por técnicas de mutagénese dirigida estudamos quais as zonas das proteínas importantes para a catálise uma vez que estudamos o efeito da substituição de resíduos de aminoácidos específicos nas caracteristicas das enzimas. Eventualmente, esperamos que algumas das substituições que fazemos possam gerar enzimas mais eficazes para utilizações biotecnológicas. Tendo este objectivo em mente, estamos neste momento a optimizar técnicas de Evolução Dirigida, em que utilizamos estratégias de mutagénese aleatória seguidas de rastreio para propriedades importantes sob o ponto de vista biotecnológico (por exemplo, maior estabilidade e utilização de substratos não naturais), de forma a encontrar biocatalisadores robustos e melhorados para utilização industrial.

top

Document Actions