Personal tools
You are here: Home / Research / Biological Chemistry / Microbial & Enzyme Technology

Lígia O. Martins Lab

Microbial-&-Enzyme-Technology.jpg

The research activities are in the field of Molecular Biotechnology at the interface of protein science and protein technology, and involve the selection, structure-function characterization, and engineering of promising enzymes for environmental and industrial applications.

Lígia O. Martins
Associate Professor
PhD in Biotechnology, IST-UL

Phone (+351) 214469534 | Extension 1534
Email lmartins@itqb.unl.pt | Lab website

Research Interests

Biocatalysis is considered a key component for developing a sustainable bio-economy, and enzymes are used as biocatalysts in various industries. Enzymes are sustainable, selective, and efficient, offering multiple benefits, such as cleaner reactions and increased specificity, with lower energy requirements.

In recent years, we have successfully established a research program focused on investigating a variety of bacterial oxidoreductases. The target enzymes are laccases and metallo-oxidases from the family of multicopper oxidases, NAD(P)H: FMN-dependent quinone/azo dye reductases (azoreductase), DyP-type peroxidases from a new microbial family of heme peroxidases, FAD-dependent pyranose 2-oxidase, with importance in diagnosis and carbohydrate chemistry, and recently, isoeugenol monooxygenases that convert a lignin-related phenolic, isoeugenol into vanillin. We investigate their mechanistic and structural properties and use protein-engineering methodologies, including directed evolution, improving the enzyme´s performance and robustness. Additionally, using multidisciplinary approaches, we explore these enzymes' efficiency in degrading synthetic and natural amine and phenolic aromatic substrates and synthesizing aromatic added-value compounds. The final goal is the design of biological systems for new functions, a fundamental tenet of synthetic biology, by exploring the catalytic properties of multiple and improved enzymes and cells to produce industrially relevant compounds, contributing to the intelligent and circular use of natural resources.


Group Members

  • Lígia O Martins, Head of the laboratory

  • Paulo Durão, Associate Investigator

  • Vânia Brissos, Junior Investigator

  • Patrícia Borges, Junior Investigator

  • Diogo Silva, Ph.D. Student

  • André Taborda, Ph.D. student

  • Mario De Simone, Ph.D. student

  • Carolina Ferro Rodrigues, Ph.D. student

  • Tomás Frazão, Ph.D. student

  • Magalí Scoccozza, Ph.D. student (co-supervision Daniel Murgida, UBA, Argentina)

  • Catarina Barbosa, Ph.D. student (co-supervision Smilja Todorovic, ITQB NOVA)

  • Catarina Coelho, Ph.D. student (co-supervision Igor Tiago, Univ Coimbra)

  • Carolina Dias, MS.c. student

  • Zhenjia Chen, Invited Scientist

 

Recent Publications

  1. Borges, PT, Silva, D, Silva, TFD, Brissos, V., Canellas, M, Lucas, MF, Masgrau, L, Melo, EP, Machuqueiro, M, Frazão, C, Martins, LO. 2022. Unveiling Molecular Details behind Improved Activity at Neutral to Alkaline pH of an Engineered DyP-type Peroxidase. Comp Struct Biotechnol J 20:3899-3910

  2. De Simone, M, Alvigini, L, Alonso-Cotchico, L, Brissos, V, Caroli, J, Lucas, MF, Monza, E, Melo, EP, Mattevi, A, Martins, LO 2022. Improving NOV1 Oxygenase for the Conversion of Lignin-Derived Isoeugenol to Vanillin. Biochemistry.  https://doi.org/10.1021/acs.biochem.2c00168

  3. Brissos, V, Borges, PT, Nunez, R, Lucas, MF, Frazão, C, Monza, E, Masgrau, L, Cordeiro, TN, Martins, LO. 2022. Distal mutations shape substrate-binding sites during evolution of a metallo-oxidase into a laccase ACS Catal 12: 5022-5035

  4. Borges, PT, Brissos, V, Hernandez, G, Masgrau, L, Lucas, MF, Monza, E, Frazão, C, Cordeiro, TN, Martins, LO. 2020. Methionine-Rich loop of multicopper oxidase McoA follows open-to-close transitions with a role in enzyme catalysis. ACS Catal 10, 7162-7176

Laboratory's Website

For further information please visit the laboratory's website

  

Tecnologia Microbiana e Enzimática (PT)

O nosso laboratório estuda microrganismos e enzimas com potencial para aplicações biotecnológicas (ambientais e industriais). Estudamos a correlação entre a estrutura de enzimas, nomeadamente lacases bacterianas, com a sua função. Para isso são utilizadas várias metodologias que envolvem técnicas de Microbiologia, Biologia Molecular, Bioquímica e Biofísica. Também temos colaborações estabelecidas com outros grupos o que nos permite realizar uma caracterização o mais completa possível das enzimas que estudamos. Por técnicas de mutagénese dirigida estudamos quais as zonas das proteínas importantes para a catálise uma vez que estudamos o efeito da substituição de resíduos de aminoácidos específicos nas caracteristicas das enzimas.

Eventualmente, esperamos que algumas das substituições que fazemos possam gerar enzimas mais eficazes para utilizações biotecnológicas. Tendo este objectivo em mente, estamos neste momento a optimizar técnicas de Evolução Dirigida, em que utilizamos estratégias de mutagénese aleatória seguidas de rastreio para propriedades importantes sob o ponto de vista biotecnológico (por exemplo, maior estabilidade e utilização de substratos não naturais), de forma a encontrar biocatalisadores robustos e melhorados para utilização industrial.

top

Document Actions