Personal tools
You are here: Home / Research / Chemistry / Bio-oriented Supramolecular Chemistry

Pedro Mateus Lab

The Bio-oriented Supramolecular Chemistry lab explores supramolecular-based approaches to tackle problems at the interface of Chemistry and Biology. The lab seeks to prepare new chemical entities that can bind biological targets through non-covalent interactions, aiming to develop chemical probes or inhibitors of biological processes.

Pedro Mateus
Auxiliary researcher
PhD 2011 in Chemistry, ITQB NOVA

Phone (+351) 214469751 | Extension 1751

Research Interests

The establishment of non-covalent interactions between complementary molecules is a ubiquitous feature in Nature and is at the basis of almost every aspect of Supramolecular Chemistry. Pioneering research on this field focused on synthetic receptors for structurally simple guests. As the field expanded, more elaborate systems have emerged that allowed binding increasingly complex targets, although performing recognition in water remained a challenging goal. In recent years, supramolecular chemists have made significant advances on how to reliably build suitably functionalized scaffolds with appropriate geometric arrangement of molecular recognition motifs to achieve strong, selective binding in aqueous solutions. This is allowing the development of synthetic receptors capable of binding and sensing biomacromolecules and affect biological systems, which offers a myriad of new possibilities to study and interfere with biological processes.

The main goal of The Bio-oriented Supramolecular Chemistry lab is to develop molecular architectures capable of binding bio-relevant targets (small molecules, peptides, proteins, and nucleic acids) to tackle problems at the interface of Chemistry and Biology, i.e., to develop compounds either to be used as analytical or diagnostic tools (chemical probes) or to interfere with pathologic biological processes (therapeutic agents). For that purpose, the lab’s research consists in the design of new chemical entities and their preparation through covalent organic synthesis or by self-assembly; in the study of their molecular recognition properties; and in the evaluation of their utility in biological contexts in collaboration with biologists. The work is highly multidisciplinary, resorting to a wide range of methodologies to prepare and study supramolecular systems. These include multi-step organic synthesis, purification techniques, coordination chemistry, spectroscopic characterization methods (NMR, MS, UV-vis, fluorescence, CD), and quantification of thermodynamic equilibria techniques (pH-metric, spectroscopic and ITC).


Selected Publications

  1. P. Mateus, A. Jacquet, A. Méndez-Ardoy, B. Kauffmann, G. Pecastaings, T. Buffeteau, Y. Ferrand, I. Huc, D. M. Bassani, “Sensing a binding event through charge transport variations using an aromatic oligoamide capsule”, Chem. Sci. 2021, 12, 3743–3750.

  2. P. Mateus, N. Chandramouli, C. D. Mackereth, B. Kauffmann, Y. Ferrand, I. Huc, “Allosteric recognition of homomeric and heteromeric pairs of monosaccharides by a foldamer capsule”, Angew.Chem.Int. Ed., 2020, 59, 5797–5805.

  3. P. Mateus, B. Wicher, Y. Ferrand, I. Huc, “Carbohydrate binding through first- and second-sphere coordination within aromatic oligoamide metallofoldamers”, Chem. Commun., 2018, 54, 5078–5081.

  4. A. Cruz, A. Núñez-Montenegro, P. Mateus,* R. Delgado,* “Monitoring inorganic pyrophosphatase activity with a fluorescent dizinc(II) complex of a macrocycle bearing one dansylamidoethyl antenna”, Dalton Trans., 2020, 49, 9487–9494.

  5. L. M. Mesquita, F. Herrera, C. V. Esteves, P. Lamosa, V. André, P. Mateus,* R. Delgado,* “Inhibition of the STAT3 protein by a dinuclear macrocyclic complex”, Inorg. Chem., 2016, 55, 3589–3598.


Química Supramolecular Bio-orientada (PT)

O desenvolvimento de recetores sintéticos capazes de se ligar e detetar biomoléculas oferece uma infinidade de novas possibilidades para estudar e interferir com processos biológicos.

O laboratório de Química Supramolecular Bio-orientada procura desenvolver arquiteturas moleculares capazes de se ligar a alvos bio-relevantes (pequenas moléculas, péptidos, proteínas e ácidos nucleicos) para resolver problemas na interface entre a Química e a Biologia. Essas moléculas serão usadas como ferramentas analíticas ou de diagnóstico (sondas químicas) ou para interferir com processos biológicos patológicos (agentes terapêuticos). Para isso, o trabalho no laboratório consiste no design de novas moléculas e sua preparação por síntese orgânica covalente ou por automontagem; no estudo das suas propriedades de reconhecimento molecular; e na avaliação da sua utilidade em contextos biológicos em colaboração com biólogos. O trabalho é altamente multidisciplinar, recorrendo a várias metodologias que incluem síntese orgânica, técnicas de purificação, química de coordenação, métodos de caracterização espectroscópica (RMN, MS, UV-vis, fluorescência, CD) e técnicas de quantificação de equilíbrio termodinâmico (potenciometria, espectroscopias e ITC).



Document Actions