Personal tools
You are here: Home / Research / Chemistry / Bioorganic Chemistry

Rita Ventura Lab

 

Bioorganic-Chemistry.jpg

Bioorganic Chemistry is the interface of organic chemistry and biology. Our research uses the principles and techniques of organic chemistry in attempting to solve problems of relevance to biology. We can design synthetic derivatives of natural products, that improve on nature.

Rita Ventura
Investigador Auxiliar
PhD 1999 in Chemistry, ITQB NOVA

Phone (+351) 214469775/78 | Extension 1775/78
Email rventura@itqb.unl.pt| Lab website

logos_mostmicro_200px.jpg


Research Interests

Our group is interested in the stereoselective synthesis of new biologically active compounds in order to enhance or modulate their properties and to contribute to the understanding of their biological roles and for the discovery of new drug targets. This knowledge is important for the design and synthesis of new molecules that can interfere with the molecular mechanisms responsible for pathogenic behaviours, with potential innovative therapeutic applications.

The main interests of the Bioorganic Chemistry Group are the design and synthesis of new organocatalysts from readily available chiral starting materials for enantioselective reactions, for example reactions that require photochemical activation. We are pursueing the synthesis and optimisation of new AI-2 prodrugs, namely AI-2 linked to glycosides that will ensure the specific delivery of AI-2 to the gut and avoid degradation by oral administration. Our expertise in the chemistry of AI-2, a very unstable molecule, is being used to synthesise new AI-2 derived probes for biological studies.

Our group has a long experience in carbohydrate synthesis, including the development of high stereoselective glycosylation reactions to be applied to the synthesis of di- and higher saccharides. Ongoing projects are: the synthesis of sugar derived new molecular probes designed to inhibit galactosyltransferases specific of Tripanosoma brucei and other pathogenic microorganisms, to discover new drug targets and develop new drug candidates; the synthesis of new inhibitors of enzymes involved in the assembly of the unique lipid-rich cell wall of Mycobacteria, including Mycobacteria tuberculosis.

The synthesis of fluorescence labelled molecules used in biological studies, such as antibiotics, is another ongoing project.

The synthesis of new analogues of (poly)phenol metabolites, with potential applications in neuredegenerative and cardiovascular diseases.

Another aim is to design and develop efficient asymmetric synthesis of oleocanthal, oleacein and corresponding metabolites found in virgin olive oil (VOO) and biological fluids after VOO consumption. The new syntheses will provide (-)-oleocanthal and (-)-oleacein with high chemical and optical purity and in sufficient amounts to be used as standards and further biological tests. Our concern is also to develop more atom economic syntheses for a greener and more affordable approach.

 

NOTE: AI-2 and related compounds are available for sale.

 

 

Group Members

  • Gonzalo Carrau - PhD Researcher (Investigador doutorado)

  • Vanessa Miranda - PhD Researcher (Investigador doutorado)

  • João Cascão - PhD student

  • Márcia Rénio - PhD student

  • Diana Silva - PhD student (Supervisor Ulrich Grädler, co-supervisor Tiago Bandeiras)

  • Bárbara Rebelo - PhD student (Supervisor Rita Abranches)

  • Beatriz Martins - PhD student (co-supervisor Rosário Bronze)

  • Cristiano Conceição - BI researcher

 

Selected Publications

  1. Miranda, V.; Torcato, I. M.; Xavier, K. B.; Ventura, M. R. “Synthesis of D-desthiobiotin-AI-2 as a novel chemical probe for autoinducer- 2 quorum sensing receptors.” Bioorganic Chemistry 2019, 92, 1032002. https://doi.org/10.1016/j.bioorg.2019.103200.
  2. Bevan, J. G. M.; Lourenço, E. C.; Chaves-Ferreira, M.; Rodrigues, J.; Ventura, M. R., “Immobilization of UDP-galactose on an amphiphilic resin.” Eur. J. Org. Chem. 2018, 908.
  3. Ripoll-Rozada, J.; Costa, M.; Manso, J. A.; Maranha, A.; Miranda, V.; Sequeira, A.; Ventura, M. R.; Macedo-Ribeiro, S.; Pereira, P. J. B.; Empadinhas, N. “Unveiling mycobacterial methylmannose polysaccharide biosynthesis: a unique 1-O-methyltransferase specific for 3-O-methylated mannosides.” PNAS 2019, 116, 835. doi/10.1073/pnas.1813450116.
  4. Almeida, F. A.; Santos, C. N.; Ventura, M. R., “Synthesis of New Sulfated and Glucuronated Metabolites of Dietary Phenolic Compounds Identified in Human Biological Samples.” J. Agric. Food Chem. 2017, 65, 6460.

 

Laboratory's Website

For further information please visit the laboratory's website.

 

Química Bioorgânica (PT)

A Química Bioorgânica é a interface entre a química orgânica e a biologia. A nossa investigação usa os princípios e técnicas de química orgânica para tentar resolver problemas relevantes na área da biologia. Podemos também desenvolver derivados sintéticos com propriedades melhores que as correspondentes moléculas naturais, contribuíndo para melhorar e perceber a natureza.

O nosso grupo está interessado na síntese de moléculas pequenas que podem actuar como catalisadores – organocatalisadores – e que podem ser usados na construção de moléculas orgânicas enantiopuras, sendo uma alternativa aos catalisadores contendo metais e enzimas.

Outra área de investigação no nosso grupo é a química de carbohidratos. Um dos alvos é a síntese de moléculas que sejam substratos específicos de enzimas envolvidas na síntese de oligossacáridos importantes para a construção da parede celular das microbactérias, incluíndo a Mycobacteria tuberculosis. Essas enzimas são potenciais alvos terapêuticos, e a síntese de análogos que as inibam especificamente é outro interesse do grupo. A síntese de novas moléculas desenhadas para inibir galactosiltransferases específicas do Tripanosoma brucei está a ser desenvolvida, para descobrir novos alvos terapêuticos e novos potenciais fármacos.

Em colaboração com o grupo de Sinalização Bacteriana, desenvolvemos uma síntese eficiente da 4,5-dihidroxi-2,3-pentanodiona (DPD), precursor do AI-2, um autoindutor de “detecção de quorum” que regula a comunicação inter-espécies entre bactérias, processo responsável por comportamentos bacterianos tais como a formação de biofilmes, virulência e produção de antibióticos. Novos análogos desta molécula estão a ser desenvolvidos, para actuarem com pró-fármacos, e como novas sondas para melhor estudar os processos onde o AI-2 está envolvido.

top

Document Actions