Personal tools
You are here: Home / Research / Biological Chemistry / Microbial & Enzyme Technology

Lígia O. Martins Lab

Microbial-&-Enzyme-Technology.jpg

The research activities are in the field of Molecular Biotechnology at the interface of protein science and protein technology, and involve the selection, structure-function characterization, and engineering of promising enzymes for environmental and industrial applications.

Lígia O. Martins
Professor Auxiliar
PhD 1994 in Biotechnology , UTL-IST

Phone (+351) 214469534 | Extension 1535
Email lmartins@itqb.unl.pt | Lab website

logos_green_logo_200px.jpg

Research Interests

Biocatalysis is considered a key component for the development of a sustainable bio-economy and the use of enzymes as biocatalysts has been constantly growing in a range of industries. Enzymes are sustainable, selective and efficient, and offer a variety of benefits such as cleaner reactions and increased specificity, with lower energy requirements.

In recent years we have successfully established a research program focused on the investigation of a variety of bacterial oxidoreductases, laccases and metallo-oxidases, from the family of multicopper oxidases, NAD(P)H:FMN-dependent quinone (azo dye) reductases, DyP-type peroxidases, a new microbial family of heme peroxidases, and recently, a FAD-dependent pyranose 2-oxidase, with importance in diagnosis and carbohydrate chemistry. We investigate mechanistic and structural properties of enzymes in order to understand the basic determinants of their catalytic and stability properties. Protein engineering methodologies including directed evolution are utilized for the improvement of enzyme´s performance and robustness allowing simultaneously getting insight over structure-function relationships. Additionally we explore using multidisciplinary approaches the efficiency of these enzymes in the degradation of synthetic and natural amine and phenolic aromatic substrates as well as in the synthesis of aromatic added-value compounds. The final goal is the design of biological systems for new functions, a key tenet of synthetic biology, by exploring the catalytic properties of multiple and improved enzymes and cells for the production of industrially relevant compounds, contributing for the smart and circular use of natural resources.

 


Group Members

  • Vânia Brissos, Post-doc

  • Zhenghia Chen, Invited Scientist

  • Diogo Silva, PhD Student

  • Ana Fernandes, PhD student (with Beatriz Royo, ITQB)

  • Vera Guerra, PhD student (with A Veríssimo, UC)

  • Vasco Batista, PhD student (with A Silva, UA)

  • Diana Santos, BI

  • Zuleica Duarte, BI

Selected Publications

  1. Brissos, V, Tavares, D, Sousa, AC, Robalo, MP Martins, LO. 2017. Engineering a Bacterial DyP-type Peroxidase for Enhanced Oxidation of Lignin-related Phenolics at Alkaline pH. ACS Catalysis. 7, 3454-3465.

  2. Sousa, AC, Piedade, MFMM, Martins, LO and Robalo. 2016. Eco-friendly synthesis of indo dyes mediated by a bacterial laccase. Green Chemistry. 2016, 18, 6063 – 6070.

  3. Mendes, S, Catarino, T, Silveira, C, Todorovic, S and Martins, LO. 2015. Catalytic mechanism of BsDyP an A-type dye-decolourising peroxidase: neither aspartate nor arginine is individually essential for peroxidase activity. Cat. Sci. Technol. 5: 5196-5207.

  4. Brissos, V, Ferreira, M, Grass, G and Martins, LO. 2015. Turning a hyperthermostable metallo-oxidase into a laccase by directed evolution. ACS Catalysis 5: 4932-4941


Laboratory's Website

For further information please visit the laboratory's website

  

Tecnologia Microbiana e Enzimática (PT)

O nosso laboratório estuda microrganismos e enzimas com potencial para aplicações biotecnológicas (ambientais e industriais). Estudamos a correlação entre a estrutura de enzimas, nomeadamente lacases bacterianas, com a sua função. Para isso são utilizadas várias metodologias que envolvem técnicas de Microbiologia, Biologia Molecular, Bioquímica e Biofísica. Também temos colaborações estabelecidas com outros grupos o que nos permite realizar uma caracterização o mais completa possível das enzimas que estudamos. Por técnicas de mutagénese dirigida estudamos quais as zonas das proteínas importantes para a catálise uma vez que estudamos o efeito da substituição de resíduos de aminoácidos específicos nas caracteristicas das enzimas. Eventualmente, esperamos que algumas das substituições que fazemos possam gerar enzimas mais eficazes para utilizações biotecnológicas. Tendo este objectivo em mente, estamos neste momento a optimizar técnicas de Evolução Dirigida, em que utilizamos estratégias de mutagénese aleatória seguidas de rastreio para propriedades importantes sob o ponto de vista biotecnológico (por exemplo, maior estabilidade e utilização de substratos não naturais), de forma a encontrar biocatalisadores robustos e melhorados para utilização industrial.

top

Document Actions